A Deep-Learning-Based Reservoir Surrogate for Performance Forecast and Nonlinearly Constrained Life-Cycle Production Optimization Under Geological Uncertainty

Author:

Nguyen Quang Minh1,Onur Mustafa2

Affiliation:

1. University of Tulsa, Tulsa, OK, USA / ExxonMobil Technology and Engineering Company, Spring, TX, USA

2. University of Tulsa, Tulsa, OK, USA

Abstract

Abstract This study presents an efficient gradient-based production optimization method that uses a deep-learning-based proxy model for the prediction of state variables (such as pressures and saturations) and well outputs (such as bottomhole pressures and injection rates) to solve nonlinearly constrained optimization with geological uncertainty. The surrogate model is the Embed-to-control Observe (E2CO) deep-learning proxy model, consisting of four blocks of neural networks: encoder, transition, transition output, and decoder. The use of a transition output block in E2CO networks provides the capability of predicting reservoir system output directly from the input state variables without using any explicit well-model equations. The proxy model is coupled with a powerful stochastic-gradient-based line-search sequential quadratic programming (LS-SQP) workflow to handle robust production optimization in the presence of nonlinear state constraints. A portion of the SPE10 benchmark reservoir model with channelized heterogeneous permeability under waterflooding is used for demonstrating the prediction and optimization performances of the proposed E2CO-based framework. The results from this framework are directly and quantitatively compared with the ones simulated using a commercial high-fidelity reservoir simulator.

Publisher

SPE

Reference69 articles.

1. Aarnes, J. E., Kippe, V., and Lie, K.-A. 2005. Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Advances in Water Resources28 (3): 257–271. https://doi.Org/10.1016/j.advwatres.2004.10.007.

2. Abadi, M., Agarwal, A., Barham, P., Eugene, B., Chen, Z., Citro.C., Corrado, G. S., Davis, A., Dean, J., Devin, M, Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Vanhoucke, V., Vasudevan, V., Viegas, F., Oriol, V., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467.

3. Adeyemi, A., Nguyen, Q. M., and Onur, M. 2024. Streamlining Robust Constrained Production Optimization: An Integrated Framework Utilizing Automatically Differentiated Gradient from Deep-Learning-Based Reservoir Surrogates. Proc., ECMOR, Oslo, Norway, 2-5 Sep. 1–20.

4. Practical Optimization: Algorithms and Engineering Applications;Antoniou;Springer Science & Business Media,2007

5. Almasov, A., and Onur, M. 2021. Life-Cycle Optimization of the Carbon Dioxide Huff-n-Puff Process in an Unconventional Oil Reservoir Using Least-Squares Support Vector and Gaussian Process Regression Proxies. SPE Journal26 (4):1914–1945. SPE- 201721-PA. https://doi.org/10.2118/201721-PA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3