1. Aarnes, J. E., Kippe, V., and Lie, K.-A.
2005. Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Advances in Water Resources28 (3): 257–271. https://doi.Org/10.1016/j.advwatres.2004.10.007.
2. Abadi, M., Agarwal, A., Barham, P., Eugene, B., Chen, Z., Citro.C., Corrado, G. S., Davis, A., Dean, J., Devin, M, Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Vanhoucke, V., Vasudevan, V., Viegas, F., Oriol, V., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467.
3. Adeyemi, A., Nguyen, Q. M., and Onur, M.
2024. Streamlining Robust Constrained Production Optimization: An Integrated Framework Utilizing Automatically Differentiated Gradient from Deep-Learning-Based Reservoir Surrogates. Proc., ECMOR, Oslo, Norway, 2-5 Sep. 1–20.
4. Practical Optimization: Algorithms and Engineering Applications;Antoniou;Springer Science & Business Media,2007
5. Almasov, A., and Onur, M.
2021. Life-Cycle Optimization of the Carbon Dioxide Huff-n-Puff Process in an Unconventional Oil Reservoir Using Least-Squares Support Vector and Gaussian Process Regression Proxies. SPE Journal26 (4):1914–1945. SPE- 201721-PA. https://doi.org/10.2118/201721-PA.