Enhancing Waterflooding Performance Using a combined Data Driven and Physical Modeling Approach

Author:

Grijalva R.1,Tellez C.1,González C.1,Parra J.1,Eremiev F.1,Florez F.2,Frorup M.2,Khataniar S.2,Biniwale S.2,Elfeel M.2,García-Teijeiro X.2

Affiliation:

1. SLB, Quito, Pichincha, Ecuador

2. SLB, Abingdon, Oxfordshire, United Kingdom

Abstract

Abstract The waterflooding implementation in an Amazonian oil field has been a game-changer in the field development strategy, becoming the main production drive mechanism and investment focus. About 40% of the daily oil production comes from waterflooding projects. Hence, it is imperative to preserve integrated reservoir and field operation management through a customized pattern balancing methodology that accounts for a need to optimize the injection-extraction relationship minimizing early water breakthrough and avoiding operational issues. This article presents a waterflooding pattern analysis tool that combines data-driven and physics-based Machine Learning models with a smart optimization workflow. This publication focuses on the theoretical foundation of the deployable prototype, which is based mainly on the application of an innovative physics data driven and ML model as well as its testing procedure. The tool has been tested in an area with nine deviated water injector wells and thirty-six deviated/horizontal producer wells, enabling quick analysis response based on different What-If and optimization scenarios. Users can assess the impact on production and waterflooding response by modifying operational parameters such as injection rates or liquid flow rates, or how to react if an oil-producing/water-injection well fails. The engineering and operation teams use and share a tool that avoids personalized spreadsheets with off-dated information and non-auditable metrics behind the results. The data preparation capabilities of the new tool speed up the interaction of data-driven and physics models and make a more efficient data flow process integrated with Capacitance Resistance Model (CRM) (Yousef et al. 2005) analytic model. The teams experienced a step-change in productivity by reducing a complete iteration analysis from 23 to 5 hours. The optimization workflow generates possible injector-producer relationships for pattern analysis and short (weekly) and mid-term (90-day) forecasts. Users can test different scenarios, choose the optimum, and submit subsurface focused well-operating recommendations to field operations.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3