Optimization of Production Performance in a CO2 Flooding Reservoir Under Uncertainty

Author:

Chen S.1,Li H.1,Yang D.1

Affiliation:

1. University of Regina

Abstract

Abstract CO2  flooding has gained momentum in the oil and gas industry and might be suitable for approximately 80% of oil reservoirs worldwide based on the oil recovery criteria alone. In addition to miscibility, production performance needs to be optimized to achieve higher sweep efficiency and oil recovery. Although many techniques have been made available for production optimization in the upstream oil and gas industry, it is still a challenging task to optimize production performance in the presence of physical and/or financial uncertainties. In this paper, a new technique is developed to optimize production performance in a CO2 flooding reservoir under uncertainty. More specifically, potential uncertainties influencing production performance are analyzed and assessed by using the geostatistical technique. This enables us to integrate the available information within a unified and consistent framework and to generate multiple geological realizations accounting for uncertainty and spatial variability. Subsequently, the net present value (NPV) is selected as the objective function to be optimized by using the genetic algorithm, while well rates of the injectors and the flowing bottomhole pressure for the producers are chosen as the controlling variables. In addition, corresponding modifications have been made to accelerate the convergence speed of the genetic algorithm. A field case is used to demonstrate the procedures of the newly developed technique and the optimized results show that the oil recovery and the NPV can be increased by 6.4% and 9.2%, respectively. It is also found that the genetic algorithm is a powerful and reliable search method to optimize production performance of reservoirs with complex structures. Introduction CO2 flooding is considered as a promising and practical enhanced oil recovery (EOR) process because it not only increases oil recovery, but also reduces greenhouse gas emissions by sequestrating CO2 in the depleted reservoirs. In practice, CO2 flooding performance can be greatly affected by the reservoir heterogeneity, which can severely reduce the sweep efficiency, result in early CO2 breakthrough at the producers, and thus, leave a large amount of bypassed oil in the reservoir(1). Therefore, it is of fundamental and practical importance to optimize production performance of a CO2 flooding reservoir.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3