A multi-agent deep reinforcement learning method for co2 flooding rates optimization

Author:

Rongtao Li1ORCID,Liao Xinwei1,Wang Xiaoyan2,Zhang Yang2,Mu Lingyu3,Dong Peng1,Tang Kang1

Affiliation:

1. China University of Petroleum (Beijing), School of Petroleum Engineering, Beijing, China

2. Oil Production Technology Research Institute, PetroChina Dagang Oil-field, Tianjin, China

3. CNPC Engineering Technology R&D Company Limited, Beijing, China

Abstract

The CO2 flooding with superior displacement efficiency and high injectivity is an efficient enhanced oil recovery method. However, due to the unfavorable sweep efficiency particularly for strong heterogeneous reservoirs and immiscible flooding, the oil recovery on site is not all favorable. Multi-well rates optimization is one of common measures improving sweep efficiency with easy implement and low cost There are many rates optimization methods have been proposed by now. In this research, we first introduced the multi-agent deep deterministic policy gradient (MADDPG) algorithm to the multi-well rates optimization of CO2 flooding, and the new rates optimization method was built. The MADDPG adopts the centralized training and decentralized execution algorithm framework, and overcomes the defect that the single-agent reinforcement learning cannot deal the multi-well rates optimization well and also avoids the dimensional disaster problems. We treated each well as an agent, and each agent has its own reward, state and action. We chose the net present value (NPV) as the reward, the injection-production rate change range as the action element, and the production time, the bottom hole pressure, the oil production rate, and the gas-oil ratio as the state elements. The simulation results show that the optimal case obviously improves the NPV compared with the base case, and the simulation case with strong heterogeneity and immiscible flooding can also converge to the optimal target, which prove the effectiveness and robustness of the rates optimization method respectively. This research provides recommendations that improving the oil recovery by increasing the sweep efficiency to increase the income, and reducing the invalid CO2 injection to decrease the cost can achieve the optimal NPV. Reservoir heterogeneity seriously impairs the rates optimization performance, and rates optimization makes little difference to extreme strong interlayer heterogeneity for serious interlayer influence.

Funder

National Science and Technology Major Projects

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3