Integrated Optimization of Hybrid Steam-Solvent Injection in Post-CHOPS Reservoirs with Consideration of Wormhole Networks and Foamy Oil Behavior

Author:

Hou Senhan1ORCID,Gu Daihong2,Yang Daoyong3ORCID,Yang Shikai1,Zhao Min1

Affiliation:

1. Energy Systems Engineering, Faculty of Engineering and Applied Science, University of Regina

2. Energy Systems Engineering, Faculty of Engineering and Applied Science, University of Regina; School of Petroleum Engineering, China University of Petroleum, Beijing (Corresponding author)

3. Energy Systems Engineering, Faculty of Engineering and Applied Science, University of Regina (Corresponding author)

Abstract

Summary For this paper, integrated techniques have been developed to optimize the performance of the hybrid steam-solvent injection processes in a depleted post-cold heavy oil production with sand (CHOPS) reservoir with consideration of wormhole networks and foamy oil behavior. After a reservoir geological model has been built and calibrated with the measured production profiles, its wormhole network is inversely determined using the newly developed pressure-gradient-based (PGB) sand failure criterion. Such a calibrated reservoir geological model is then used to maximize the net present value (NPV) of a hybrid steam-solvent injection process by selecting injection time, soaking time, production time, injection rate, steam temperature, and steam quality as the controlling variables. The genetic algorithm (GA) has been integrated with orthogonal array (OA) and Tabu search to maximize the NPV by delaying the displacement front as well as extending the reservoir life under various strategies. Considering the wormhole network and foamy oil behavior and using the NPV as the objective function, such a modified algorithm can be used to allocate and optimize the production-injection strategies of each huff ‘n’ puff (HnP) cycle in a post-CHOPS reservoir with altered porosity and increased permeability within a unified, consistent, and efficient framework.

Publisher

Society of Petroleum Engineers (SPE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3