A New Approach in Permeability and Hydraulic-Flow-Unit Determination

Author:

Izadi Mohammad1,Ghalambor Ali2

Affiliation:

1. Colorado School of Mines

2. Oil Center Research International

Abstract

Summary Building an integrated subsurface model is one of the main goals of major oil and gas operators to guide the field-development plans. All field-data acquisitions from seismic, well logging, production, and geomechanical monitoring to enhanced-oil-recovery (EOR) operations can be affected by the accurate details incorporated in the subsurface model. Therefore, building a realistic integrated subsurface model of the field and associated operations is essential for a successful implementation of such projects. Furthermore, using a more reliable model can, in turn, provide the basis in the decision-making process for control and remediation of formation damage. One of the key identifiers of the subsurface model is accurately predicting the hydraulic-flow units (HFUs). There are several models currently used in the prediction of these units on the basis of the type of data available. The predictions that used these models differ significantly because of the assumptions made in the derivations. Most of these assumptions do not adequately reflect realistic subsurface conditions, thus increasing the need for better models. A new approach has been developed in this study for predicting the petrophysical properties and improving the reservoir characterization. The Poiseuille flow equation and Darcy equation were coupled, taking into consideration the irreducible water saturation in the pore network. The porous medium was introduced as a domain containing a bundle of tortuous capillary tubes with irreducible water lining the pore wall. A series of routine and special core analysis was performed on 17 Berea sandstone samples, and the petrophysical properties were measured and X-ray diffraction (XRD) analysis was conducted. In building the petrophysical model, it was initially necessary to assume an ideal reservoir with 17 different layers, each layer representing one Berea sample. Afterward, by the iteration and calibration of the laboratory data, the number of HFUs was determined by use of the common HFU model and the proposed model accordingly. A comparative study shows that the new model provides a better distribution of HFUs and prediction of the petrophysical properties. The new model provides a better match with the experimental data collected than the models currently used in the prediction of such parameters. The good agreement observed for the Berea sandstone experimental data and the model predictions by use of the new permeability model shows a wider range of applicability for various reservoir conditions. In addition, the model has been applied to a series of core-analysis data on low-permeability Medina sandstone, Appalachian basin, northwest Pennsylvania. The flow-unit distribution by use of the proposed model shows a better flow-zone distinction, and the permeability/ porosity relationship has a higher confidence coefficient.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3