Petrographical and petrophysical rock typing for flow unit identification and permeability prediction in lower cretaceous reservoir AEB_IIIG, Western Desert, Egypt

Author:

Abo Bakr Abdelraheim,El Kadi Hassan H.,Mostafa TaherORCID

Abstract

AbstractThe primary objective of this study is to identify and analyze the petrophysical properties of the newly investigated AEB_IIIG member reservoir in Meleiha West Deep (MWD) Field and to classify it into different rock types. Additionally, this research intends to develop mathematical equations that may be utilized to estimate permeability in uncored sections of the same well or in other wells where core samples are unavailable. The analysis focused on the pore hole records of ten wells that were drilled in MWD Field. The reservoir levels were identified, and their petrophysical parameters were evaluated using well logs and core data. We were able to recognize seven different types of rocks (petrophysical static rock type 1 (PSRT1) to PSRT7) using petrography data, the reservoir quality index (RQI), the flow zone index (FZI), R35, hydraulic flow units (HFUs), and stratigraphy modified Lorenz (SML) plots. The analysis of the petrophysical data shows that AEB_IIIG has unsteady net pay thicknesses over the area. It has a range of 8–25% shale volume, 12–17% effective porosity, and 72–92% hydrocarbon saturation. The RQI results show that psrt1, psrt2 and psrt3 have a good reservoir quality as indicated by high R35 and helium porosity, respectively. They contribute with more than 75% of the reservoir production. The equation derived for each rock type of AEB_IIIG reservoir can be employed to forecast the permeability value distribution inside the reservoir.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Carbonate Reservoir Permeability Using a Novel Porosity Model;Arabian Journal for Science and Engineering;2024-08-09

2. Permeability Upscaling Conversion Based on Reservoir Classification;Processes;2024-08-07

3. Image-based microscale rock typing and its application;Journal of Petroleum Exploration and Production Technology;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3