Developing an Integrated Real-Time Drilling Ecosystem to Provide a One-Stop Solution for Drilling Monitoring and Optimization

Author:

Cao Dingzhou1,Ben Yuxing1,James Chris1,Ruddy Kate1

Affiliation:

1. Anadarko Petroleum Corporation

Abstract

Abstract The paper provides a technical overview of an operator's Real-Time Drilling (RTD) ecosystem currently developed and deployed to all US Onshore and Deepwater Gulf of Mexico rigs. It also shares best practices with the industry through the journey of building the RTD solution: first designing and building the initial analytics system, then addressing significant challenges the system faces (these challenges should be common in drilling industry, especially for operators), next enhancing the system from lessons learned, and lastly, finalizing a fully integrated and functional ecosystem to provide a one-stop solution to end users. The RTD ecosystem consists of four subsystems as shown in architecture Figure 1. (I) The StreamBase RTD streaming system, which is the backbone of the ecosystem. It takes the real-time streaming log data as well as other contextual well data (for example, OpenWells), processes it through analytical models, generates results, and delivers them to the web-based user interface; (II) The analytics models, which include the Machine Learning (ML)/Deep Learning (DL) models, the physics-based models and the stream analytical/statistical models; (III) The digital transformation solution, which wasdesigned to address contextual well data digitization issues to enable real-time physics-based modeling. Contextual well data like bottom hole assemblies (BHAs) and casing programs are challenging to aggregate and deliver to models, as this data is often stored in locations across multiple systems and in various formats. The digital transformation applications are designed to fit into the drilling teams' workflows and collect this information during the course of normal engineering processes, enhancing both the engineering workflow and the data collection process; (IV) the cloud based ML pipeline, which streamlines the original ML workflows, as well as establishes an anomaly detection and re-training mechanism for ML models in production. Figure 1 RTD ecosystem architecture All of these subsystems are fully integrated and interact with each other to function as one system, providing a one-stop solution for real-time drilling optimization and monitoring. This RTD ecosystem has become a powerful decision support tool for the drilling operations team. While it was a significant effort, the long term operational and engineering benefits to operators designing such a real-time drilling analytics ecosystem far outweighs the cost and provides a solid foundation to continue pushing the historical limitations of drilling workflow and operational efficiency during this period of rapid digital transformation in the industry.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3