Practical Machine-Learning Applications in Well-Drilling Operations

Author:

Olukoga T. A.1,Feng Y.1

Affiliation:

1. University of Louisiana at Lafayette

Abstract

Summary There is a great deal of interest in the oil and gas industry (OGI) in seeking ways to implement machine learning (ML) to provide valuable insights for increased profitability. With buzzwords such as data analytics, ML, artificial intelligence (AI), and so forth, the curiosity of typical drilling practitioners and researchers is piqued. While a few review papers summarize the application of ML in the OGI, such as Noshi and Schubert (2018), they only provide simple summaries of ML applications without detailed and practical steps that benefit OGI practitioners interested in incorporating ML into their workflow. This paper addresses this gap by systematically reviewing a variety of recent publications to identify the problems posed by oil and gas practitioners and researchers in drilling operations. Analyses are also performed to determine which algorithms are most widely used and in which area of oilwell-drilling operations these algorithms are being used. Deep dives are performed into representative case studies that use ML techniques to address the challenges of oilwell drilling. This study summarizes what ML techniques are used to resolve the challenges faced, and what input parameters are needed for these ML algorithms. The optimal size of the data set necessary is included, and in some cases where to obtain the data set for efficient implementation is also included. Thus, we break down the ML workflow into the three phases commonly used in the input/process/output model. Simplifying the ML applications into this model is expected to help define the appropriate tools to be used for different problems. In this work, data on the required input, appropriate ML method, and the desired output are extracted from representative case studies in the literature of the last decade. The results show that artificial neural networks (ANNs), support vector machines (SVMs), and regression are the most used ML algorithms in drilling, accounting for 18, 17, and 13%, respectively, of all the cases analyzed in this paper. Of the representative case studies, 60% implemented these and other ML techniques to predict the rate of penetration (ROP), differential pipe sticking (DPS), drillstring vibration, or other drilling events. Prediction of rheological properties of drilling fluids and estimation of the formation properties was performed in 22% of the publications reviewed. Some other aspects of drilling in which ML was applied were well planning (5%), pressure management (3%), and well placement (3%). From the results, the top ML algorithms used in the drilling industry are versatile algorithms that are easily applicable in almost any situation. The presentation of the ML workflow in different aspects of drilling is expected to help both drilling practitioners and researchers. Several step-by-step guidelines available in the publications reviewed here will guide the implementation of these algorithms in the resolution of drilling challenges.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3