Modelling of Electromagnetic Heating Process and its Applications in Oil Sands Reservoirs

Author:

Ji Dongqi1,Harding Thomas1,Chen Zhangxin1,Dong Mingzhe1,Liu Hui1

Affiliation:

1. University of Calgary

Abstract

Abstract For thermal heavy oil recovery, conventional steam injection processes are generally limited to reservoirs of relatively shallow depth, high permeability, thick pay zone and homogeneity. An alternative approach of applying Electromagnetic (EM) energy may be used to generate heat in reservoirs that are not suitable for steam injection or to improve the economics of the heavy oil recovery compared with steam injection. EM in-situ heating of oil reservoirs, in the form of EM energy absorption by dielectric materials, leads to an increase in temperature, a reduction in oil viscosity and an improvement in oil mobility. Recent studies have shown that EM heating is capable of reducing carbon emissions and water usage. However, the existing EM field simulators are limited to modeling of homogeneous media with respect to dielectric properties, which affects EM wave propagation and in-situ heat generation. For oil sands recovery where reservoir heating by EM energy is promising, it is desirable to simulate reservoirs in inhomogeneous formations, in which dielectric properties vary according to specific location. In this work, important background information regarding the EM wave propagation in inhomogeneous media is provided. A Helmholtz equation for the magnetic field by deformation of Maxwell's equations is presented that makes it feasible to find EM field solutions for such inhomogeneous media. Solution of only the magnetic field makes this work execution faster than the classical methods in which both magnetic and electric fields need to be calculated. By solving the equations of EM wave propagation and fluid flow in oil sands reservoirs simultaneously, this work provides a fully-implicit modelling method for the EM heating process. The feasibility of EM heating in oil sands is examined in two case studies: a) a horizontal well containing an antenna within and b) a horizontal well-pair with an antenna located in the upper well.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3