Multi-Physical Field Numerical Simulation of Electromagnetic Heating in Heavy Oil Reservoirs With Different Well Configurations

Author:

Chen Hong-Wei1,Zhang Shan-Shan1,Li Yang1,Xu Chi2,Qin Shu-Xing1

Affiliation:

1. Liaoning Petrochemical University College of Petroleum Engineering, , Fushun 113001 , China

2. Northeastern Petroleum Pipeline Company , Shenyang 110082 , China

Abstract

Abstract Stable and efficient extraction of heavy oil is crucial for addressing the current shortage of crude oil resources. Electromagnetic (EM) heating effectively reduces oil viscosity and improves oil recovery rate by heating oil layers with EM radiation. However, the selection of well configurations for EM heating oil recovery has yet to be thoroughly studied. This article uses numerical simulation methods to study the effect of different well configurations on the oil recovery efficiency of EM heating heavy oil reservoirs. A complex EM heating model coupled with an EM temperature seepage field was established to simulate two different well configurations: vertical and horizontal wells. The results indicate that the horizontal well configuration is more efficient in heating heavy oil reservoirs in the same area than the vertical well configuration. Vertical heating wells facilitate the swift creation of a flow channel around the wellbore due to the direction of heavy oil flow coinciding with that of the well. However, the horizontal configuration takes longer for a flow channel to form. Despite this, the temperature distribution in the reservoir under the horizontal configuration is more uniform, and high temperatures do not accumulate around the heating wells. On the other hand, with a vertical configuration, the heat accumulates at the bottom of the well along with the flow of heavy oil. Increasing EM power and frequency can lead to a rise in reservoir temperature and facilitate the flow of heavy oil. However, it is important to note that beyond a certain point, the benefits of increased power and frequency become limited and may result in an excessively high temperature of heavy oil. These results can guide the selection of appropriate well configurations for EM heating in heavy oil reservoirs.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3