Physical and mathematical modeling of cyclic steam stimulation for oil reservoirs

Author:

Gilmanov Alexander Ya.1,Kovalchuk Tatyana N.1,Shevelev Alexander P.1

Affiliation:

1. University of Tyumen

Abstract

This article discusses the construction of a physical and mathematical model of the steam cycle effect on oil reservoirs. Existing models require calculations in hydrodynamic simulators or significantly simplify the description of the motion of the heat front. Within the framework of the proposed model, a number of assumptions are introduced regarding the movement of the thermal interface between the heated oil located in the bottomhole zone and the oil whose temperature is equal to the initial one. It is assumed that this boundary has the form of a straight line in a rectangular coordinate system. Moreover, at the initial moment of time, the straight line is determined by two points: the value of the maximum power taken on the vertical axis, directed downward, and the maximum radius of heating on the horizontal axis. In the future, these parameters are reduced. It is assumed that over time, the interface between the “cold” and heated oil shifts parallel to its initial position with a decrease in the parameters that determine it. This approach to describing the displacement over time of this boundary is proposed for the first time. The purpose of the article is to determine the flow rate of the well in the case of steam-thermal treatment of the formation, taking into account the size of the heated zone. In particular, the coolant injection cycle time and the characteristic time of the steam and thermal impregnation for the proposed model are determined. The physical processes considered during the construction of this model are described by conservation laws. The calculation of the area in which the heated oil will be located takes into account parameters such as flow rate and heat content of the coolant, reservoir thickness and thermal properties of the surrounding rocks. The article discusses the issues related to the relevance of the application of the methodology of vapor-cyclical effects on oil reservoirs. The result of the developed model is the dependence of the oil production rate on time for the cyclic treatment of bottom-hole zones of wells. The proposed method allows us to analyze the development efficiency depending on the main technological parameters. Such calculations allow you to choose the most optimal development strategy, and therefore, increase oil recovery.

Publisher

Tyumen State University

Reference15 articles.

1. Amerkhanov M. I. 2010. “Recovery of ultra-heavy oil”. Neftegazovaya vertical, no. 11, pp. 88-91. [In Russian]

2. Garushev A. R. 2008. “Analysis of the current state of the methods for producing high-viscosity oils and bitumen in the world”. Neftepromyslovoye delo, no. 10, pp. 4-8. [In Russian]

3. Mitrushkin D. A., Khabirova L. K. 2010. “Mathematical modeling for problems of recovery of high-viscosity oil”. Vestnik CKR Rosnedra, no. 1, pp. 52-59. [In Russian]

4. Osipov A. V., Solomatin A. G. 2011. “The influence of the duration of the period of oil production on the efficiency of cyclic steam stimulation of bottom-hole zones of wells”. Burenie i neft, no. 2, pp. 42-44. [In Russian]

5. Shevelev A. P. 2005. “Mathematical modeling of cyclic steam stimulation on oil reservoirs”. Cand. Sci. Phys-Math. diss. abstract. Tyumen: University of Tyumen. 23 pp. [In Russian]

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3