A Critical Review of Low Salinity Water Flooding for Offshore Applications and Potential Opportunities

Author:

Chen Quan1,Ayirala Subhash1,Yousef Ali1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Low salinity water flooding (LSWF) is an emerging enhanced oil recovery (EOR) technology with enormous potential for offshore applications. Numerous laboratory experiments and field trials of LSWF have been conducted to evaluate the EOR benefits and understand the underlying recovery mechanisms. The objective of this study is to provide a critical review on LSWF offshore field applications and summarize the key lessons learned. A review was also conducted on the capabilities of existing sulfate removal units for seawater injection in offshore fields. Furthermore, the potential of targeting offshore oil fields with de-sulfated seawater injection, either ongoing or planned, as primary candidates to switch over to LSWF EOR has been investigated. For LSWF field trials, the chance of success can be significantly improved when it is based on key laboratory screening tests such as corefloods at reservoir conditions. The methodologies implemented for LSWF offshore field trials mainly involved Single Well Chemical Tracer Test (SWCTT) and inter-well field trials. However, the inter-well field trials implemented so far are restricted to unconfined pilots, which makes the production and injection allocation more difficult. Therefore, confined pilots are recommended for future consideration of LSWF field trials to provide better estimations on swept volume and improvements in the oil displacement efficiency. Globally, there are more than 80 sulfate removal units currently in operation for offshore seawater flooding with approximately 10 million BWPD of cumulative de-sulfated seawater injection (DSSW) capacity for offshore water floods in the North Sea, the Gulf of Mexico, West Africa, and Brazil. All these fields with DSSW injection either ongoing or planned can become potential candidates to switch to LSWF EOR for the following two reasons: (1) The primary purpose for sulfate removal from sea water is to prevent scaling due to often high concentration of divalent cations in formation water and high sulfate concentration in seawater. The divalent cations can act as bridges between negatively charged rock surfaces and negatively charged polar oil components to increase the oil-wet tendency. These bridges become primary targets to be replaced by un-complexed cations in low salinity water for EOR. (2) The de-sulfated sea water injection process can easily be switched to LSWF by replacing the existing nanofiltration membranes in the sulfate removal facilities with reverse osmosis membranes and upgrading the facilities to increase the water treatment capacity and generate the desired low salinity water if these reservoirs fit the screening criteria and have a positive outcome of LSWF evaluation. Such retrofitting to the seawater treatment facilities on offshore platforms can bring significant gains to increase oil recovery with minimal additional investment. The novelty of this study is that it provides some useful practical guidelines for reservoir screening and offshore field implementation of LSWF. Also, the new potential of evaluating the offshore oil fields with existing de-sulfated seawater injection for switching over to LSWF has been identified. These findings will have a potential impact on increasing the prospects and opportunities of LSWF for EOR in different offshore fields.

Publisher

SPE

Reference60 articles.

1. Anres, S.T., Delaplace, G., Skivington, K., Mateen, G., Kusinski, Deepstar 11901: Subsea Low Salinity Injection Water for Increased Oil Recovery, Offshore Technology Conference, 05-08 May, 2014, Houston, Texas, USA.

2. Wettability Studies Using Low-Salinity Water in Sandstone Reservoirs;Alotaibi,2011

3. Austad T. , ‘Smart Water’ for Enhanced Oil Recovery: A Comparison of Mechanisms in Carbonates and Sandstones, presented at theFORCE Seminar on Low salinity, May2008, NPD, Stavanger, Norway.

4. Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs;Austad,2010

5. Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies;Awolayo;Interfacial Mechanisms and Modeling Attempts. Energies,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3