Wettability Studies Using Low-Salinity Water in Sandstone Reservoirs

Author:

Alotaibi M.B.. B.1,Nasralla R.A.. A.1,Nasr-El-Din H.A.. A.1

Affiliation:

1. Texas A&M University

Abstract

Summary The ionic strength of injection water can have a major impact on oil recovery resulting from the use of low-salinity brines. Understanding how the water and oil chemistry affects the final recovery from a physicochemical point of view is necessary in order to optimize low-salinity waterflooding. It is clear from the literature that wettability is a key factor in achieving the low-salinity effect. Optimum ionic strength and conditions for low-salinity flooding with respect to wettability are still uncertain. In this paper, we studied fluid/rock interactions at different salinity levels and elevated temperature conditions in terms of wettability and surface charge. Wettability is determined by a high-temperature/high-pressure (HT/HP) contact-angle method and zeta-potential technique. Outcrop rocks and stock-tank crude-oil samples were used in all experiments. Synthetic formation brine water, aquifer water, and seawater were evaluated under high-pressure conditions. Zeta potential of sandstone rocks and selected clay minerals was measured as a function of ionic strength. Wettability of oil/brine/sandstone systems depends on salinity, temperature, and rock mineralogy. Using aquifer water in Berea sandstone improved the wettability toward a water-wet condition. The same aquifer water behaved in a different way when a different sandstone surface was tested. In Scioto sandstone, aquifer water changed the wettability to a neutral state. Low-salinity water expanded the double-layer thickness and eventually increased the zeta-potential magnitude. As a result of this expansion, it provides a greater opportunity to alter the wettability and enhance oil recovery. This study indicates that clay content in sandstone rocks can significantly alter the wettability either toward water-wet or intermediate. On the basis of the results obtained from this study, it is clear that low-salinity waterflooding can improve oil recovery in the field.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3