Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs

Author:

Austad Tor1,RezaeiDoust Alireza1,Puntervold Tina1

Affiliation:

1. University of Stavanger, 4036 Stavanger, Norway

Abstract

Abstract Both laboratory and single well field tests have documented that enhanced oil recovery can be obtained from sandstone reservoirs by performing a tertiary low saline waterflood. Due to the complexity of the crude oil-brine-rock interactions, the mechanism behind the low saline EOR process has been debated in the literature for the last decade. Both physical and chemical mechanisms have been proposed, but it appears that none of the suggested processes has so far been generally accepted as the main contributor to the observed low salinity EOR effect. Based on published data and new experimental results on core flooding, effects of pH and salinity on adsorption of acidic and basic organic components onto different clay minerals, clay properties like ion exchange capacity and selectivity, and oil properties, a new chemical mechanism is suggested, which agrees with documented experimental facts. At reservoir conditions, the pH of formation water is about 5 due to dissolved acidic gases like CO2 and H2S. At this pH, the clay minerals, which act as cation exchange material, are adsorbed by acidic and protonated basic components from the crude oil, and cations, especially divalent cations from the formation water, like Ca2+. Injection of a low saline fluid, which promotes desorption of Ca2+, will create a local increase in pH close to the brine-clay interface because Ca2+ is substituted by H+ from the water. A fast reaction between OH- and the adsorbed acidic and protonated basic material will cause desorption of organic material from the clay. The water wetness of the rock is improved, and increased oil recovery is observed. To observe low salinity EOR effects in sandstones, a balanced initial adsorption of organic components and Ca2+ onto the clay is needed. Both the adsorption capacity and the pH-window for adsorption/desorption of organic material is somewhat different for various types of clay minerals. A detailed knowledge of the chemical mechanism behind the low saline EOR process together with information on formation brine composition, oil properties and type of clay material present, will make it possible to evaluate the potential for increase in oil recovery by a low salinity waterflood.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3