A Comprehensive Theoretical and Experimental Study on Fluid Displacement for Oilwell-Cementing Operations

Author:

Aranha Pedro Esteves1,de Miranda Cristiane Richard1,Cardoso Walter F.1,Campos Gilson1,Martins André Leibsohn1,Gomes Frederico C.2,de Araujo Simone Bochner2,Carvalho Marcio S.2

Affiliation:

1. Petrobras

2. Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio)

Abstract

Summary Displacing fluids in downhole conditions and for long distances is a complex task, affecting several steps of well construction. Cementing gains relevance the moment that fluid contamination compromises cement-sheath integrity and consequently zonal isolation. Density and rheology design for all the fluids involved is essential to achieve operational success. Properties hierarchy and preferred flow regimes have been empirically defined and tend to provide reasonable generic results. Challenging operations, including ultradeep waters and their narrow operational-window scenario, require further knowledge of the physics involved to prevent undesirable events. This paper presents the in-house development of software for annular miscible fluid displacement that analyzes fluid displacement in typical vertical and directional offshore wells, for Newtonian and non-Newtonian liquids and laminar- and turbulent-flow regimes. The formulation proposed provides accurate results for a wide range of input parameters, including the cases in which the ratio of the inner radious to the outer radius of the annulus is small. The computational work is validated by unique results obtained from an experimental test rig where detailed displacement tests were conducted. Contamination degrees were measured after the displacement of a sequence of fluids through 1192 m of vertical well. Effect of fluid-density and rheology hierarchy, flow regimes, and displacement concepts was investigated. The results provide relevant information for the industry and fundamental understanding on displacement of Newtonian and non-Newtonian liquids through annular sections.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3