Optimal Application Conditions for Steam/Solvent Coinjection

Author:

Keshavarz Mohsen1,Okuno Ryosuke1,Babadagli Tayfun1

Affiliation:

1. University of Alberta

Abstract

Summary Laboratory and field data, although limited in number, have shown that steam/solvent coinjection can lead to a higher oil-production rate, higher ultimate oil recovery, and lower steam/oil ratio, compared with steam-only injection in steam-assisted gravity drainage (SAGD). However, a critical question still remains unanswered: Under what circumstances can the previously mentioned benefits be obtained when steam and solvent are coinjected? To answer this question requires a detailed knowledge of the mechanisms involved in coinjection and an application of this knowledge to numerical simulation. Our earlier studies demonstrated that the determining factors for improved oil-production rates are relative positions with respect to the temperature and solvent fronts, the steam and solvent contents of the chamber at its interface with reservoir bitumen, and solvent-diluting effects on the mobilized bitumen just ahead of the chamber edge. Then, the key mechanisms for improved oil displacement are solvent propagation, solvent accumulation at the chamber edge, and phase transition. This paper deals with this unanswered question by providing some key guidelines for selecting an optimum solvent and its concentration in coinjection of a single-component solvent with steam. The optimization considers the oil-production rate, ultimate oil recovery, and solvent retention in situ. Multiphase behavior of water/hydrocarbon mixtures in the chamber is explained in detail analytically and numerically. The proposed guidelines are applied to simulation of the Senlac solvent-aided-process pilot and the Long Lake expanding-solvent SAGD pilot. Results show that an optimum volatility of solvent can be typically observed in terms of the oil-production rate for given operation conditions. This optimum volatility occurs as a result of the balance between two factors affecting the oil mobility along the chamber edge: reduction of the chamber-edge temperature and superior dilution of oil in coinjection of more-volatile solvent with steam. It is possible to maximize oil recovery and minimize solvent retention in situ by controlling the concentration of a given coinjection solvent. Beginning coinjection immediately after achieving interwell communication enables the enhancement of oil recovery early in the process. Subsequently, the solvent concentration should be gradually decreased until it becomes zero for the final period of the coinjection. Simulation case studies show the validity of the oil-recovery mechanisms described. In the final section of the paper, a limited economic analysis of SAGD and different coinjection cases is provided.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3