Numerical Modeling of Unstable Waterfloods and Tertiary Polymer Floods Into Highly Viscous Oils

Author:

de Loubens R..1,Vaillant G..1,Regaieg M..2,Yang J..2,Moncorgé A..2,Fabbri C..3,Darche G..1

Affiliation:

1. Total

2. Total E&P UK

3. Total E&P Nigeria

Abstract

Summary The saturation distribution after unstable waterflooding into highly viscous oil may have a decisive effect on the efficiency of tertiary polymer flooding, in particular because of hysteresis effects associated with oil banking. In this work, we model waterflood and tertiary polymer-flood experiments performed on Bentheimer sandstone slabs with heavy oils of approximately 2,000 and 7,000 cp, and compare the numerical results with experimental production, pressure, and X-ray data. The unstable waterfloods are initially simulated in two dimensions with our parallel in-house research reservoir simulator (IHRRS) using a high-resolution discretization. In agreement with existing literature, we find that Darcy-type simulations dependent on steady-state relative permeabilities—inferred here from a 3D quasistatic pore-network model (PNM)—cannot predict the measured waterflood data. Even qualitatively, the viscous-fingering patterns are not reproduced. An adaptive dynamic PNM is then applied on a 2D pore network constructed from the statistics of the 3D network. If the fingering patterns simulated with this 2D PNM are qualitatively in good agreement with the experimental data, a quantitative match still cannot be obtained because of the limitations of 2D modeling. Although 3D dynamic PNMs at the slab scale would currently lead to prohibitively high computational cost, they have the potential to address the deficiencies of continuum models at highly unfavorable viscosity ratio. For the tertiary polymer floods characterized by a much more favorable mobility ratio, Darcy-type modeling is applied, and history matching is conducted from the end of the waterfloods. We find that unless hysteresis caused by oil banking is accounted for in the relative permeability model, it is not possible to reconcile the experimental data sets. This hysteresis phenomenon, associated with oil invasion into previously established water channels, explains the rapid propagation of the oil bank. For the considered experiments, a simultaneous history match of good quality is obtained with the production and pressure data, and the simulated 2D saturation maps are in reasonable agreement with X-ray data. This paper addresses the challenges in modeling highly unstable waterflooding, using both a conventional Darcy-type simulator and adaptive dynamic PNM, by comparing the simulated results with experimental data including saturation maps. It also highlights the important role of relative permeability hysteresis in the tertiary recovery of viscous oils by polymer injection.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3