Simulations of Alkali-Polymer Experiments: Modeling of In-Situ Emulsion Generation and Transport of Oil-In-Water Emulsion in Porous Media

Author:

Perez-Perez Alfredo1,Romero Carolina2,Santanach-Carreras Enric2,Skauge Arne3

Affiliation:

1. CHLOE, University of Pau

2. TotalEnergies S.A.

3. Energy Research Norway

Abstract

Abstract The injection of alkali in acidic viscous oils is known to promote the in-situ formation of emulsions during chemical oil recovery. Naphthenic acid components react with the alkali to form in-situ surfactants, which support oil emulsification at the water-oil interface. It is believed that emulsification and transport of the dispersed oil in the presence of polymer can significantly improve oil recovery. In earlier work, we proposed a new mechanistic non-equilibrium model to simulate alkali-polymer processes for different oil viscosities (2000 – 3500 cP at 50°C) with an acid number of around 4 mg KOH/g. The model considers emulsion generation kinetics, polymer, and emulsion non-Newtonian viscosity through a straightforward modelling strategy. The emulsified oil was treated as a dispersed component in water phase (O/W emulsion), while the water phase mobility considered the apparent aqueous phase viscosity containing dispersed oil and polymer. In the above referenced work, seven alkali-polymer corefloods performed with different alkali types and slug sizes were history matched. We showed that the model is capable of appropriately matching the experiments. Kinetics obtained by history match show that emulsion formation under the conditions here studied is alkali type dependent. In the current work, we applied our alkali-polymer model in two displacement tests (Hele Shaw cell) with two different oil viscosities (2000 – 200 cP at 50°C). These new experiments included secondary water flood, tertiary polymer flood and quaternary alkali-polymer flood. The initial conditions of alkali-polymer (AP) flood were obtained after properly modelling the unstable immiscible floods and polymer floods. For modelling the polymer floods (2D slabs), three models were evaluated: 1) extension of relative permeability curves applied to water flood, 2) Killough method (hysteresis for the water phase) and relative permeability power-law extensions and 3) two relative permeability curves with polymer concentration dependency. Our alkali-polymer model was employed for simultaneously history matching 1D and 2D experiments performed with 5 g/L of Na2CO3 and polymer. When comparing alkali-polymer results, a good agreement was found for the complete set of experiments. In addition, fitting parameters (kinetics and emulsion viscosity) were close to the parameters reported in the earlier study. Finally, fitted alkali-polymer parameters were employed for predicting alkali-polymer outputs in the second slab (with similar alkali-polymer concentration but lower oil viscosity). Even if experimental observations are relatively well represented, a lower value of incremental oil recovery (<3 % OOIP) was obtained. We believe that the use of a less viscous oil (diluted oil) in the experiments may influence the generation and transport of formed emulsions.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3