Immiscible Viscous Fingering: The Effects of Wettability/Capillarity and Scaling

Author:

Beteta A.,Sorbie K. S.ORCID,Skauge A.,Skauge T.

Abstract

AbstractRealistic immiscible viscous fingering, showing all of the complex finger structure observed in experiments, has proven to be very difficult to model using direct numerical simulation based on the two-phase flow equations in porous media. Recently, a method was proposed by the authors to solve the viscous-dominated immiscible fingering problem numerically. This method gave realistic complex immiscible fingering patterns and showed very good agreement with a set of viscous unstable 2D water → oil displacement experiments. In addition, the method also gave a very good prediction of the response of the system to tertiary polymer injection. In this paper, we extend our previous work by considering the effect of wettability/capillarity on immiscible viscous fingering, e.g. in a water → oil displacements where viscosity ratio $$\left( {\mu_{{\text{o}}} /\mu_{{\text{w}}} } \right) \gg 1$$ μ o / μ w 1 . We identify particular wetting states with the form of the corresponding capillary pressure used to simulate that system. It has long been known that the broad effect of capillarity is to act like a nonlinear diffusion term in the two-phase flow equations, denoted here as $$D(S_{w} )$$ D ( S w ) . Therefore, the addition of capillary pressure, $$P_{c} (S_{w} )$$ P c ( S w ) , into the equations acts as a damping or stabilisation term on viscous fingering, where it is the derivative of this quantity that is important, i.e. $$D(S_{w} )\sim\left( {dP_{c} (S_{w} )/dS_{w} } \right)$$ D ( S w ) d P c ( S w ) / d S w . If this capillary effect is sufficiently large, then we expect that the viscous fingering to be completely damped, and linear stability theory has supported this view. However, no convincing numerical simulations have been presented showing this effect clearly for systems of different wettability, due to the problem of simulating realistic immiscible fingering in the first place (i.e. for the viscous-dominated case where $$P_{c} = 0$$ P c = 0 ). Since we already have a good method for numerically generating complex realistic immiscible fingering for the $$P_{c} = 0$$ P c = 0 case, we are able for the first time to present a study examining both the viscous-dominated limit and the gradual change in the viscous/capillary force balance. This force balance also depends on the physical size of the system as well as on the length scale of the capillary damping. To address these issues, scaling theory is applied, using the classical approach of Rapport (1955), to study this scaling in a systematic manner. In this paper, we show that the effect of wettability/capillarity on immiscible viscous fingering is somewhat more complex and interesting than the (broadly correct) qualitative description above. From a “lab-scale” base case 2D water → oil displacement showing clear immiscible viscous fingering which we have already matched very well using our numerical method, we examine the effects of introducing either a water wet (WW) or an oil wet (OW) capillary pressure, of different “magnitudes”. The characteristics of these two cases (WW and OW) are important in how the value of corresponding $$D(S_{w} )$$ D ( S w ) functions, relate to the (Buckley–Leverett) shock front saturation, $$S_{wf}$$ S wf , of the viscous-dominated ($$P_{c} = 0$$ P c = 0 ) case. By analysing this, and carrying out some confirming calculations, we show clearly why we expect to see much clearer immiscible fingering at the lab scale in oil wet rather than in water wet systems. Indeed, we demonstrate why it is very difficult to see immiscible fingering in WW lab systems. From this finding, one might conclude that since no fingering is observed for the WW lab-scale case, then none would be expected at the larger “field” scale. However, by invoking scaling theory—specifically the viscous/capillary scaling group, $$C_{{{\text{VC1}}}}$$ C VC1 , (and a corresponding “shape group”, $$C_{{{\text{S}}1}}$$ C S 1 ), we demonstrate very clearly that, although the WW viscous fingers do not usually appear at the lab scale, they emerge very distinctly as we “inflate” the system in size in a systematic manner. In contrast, we demonstrate exactly why it is much more likely to observe viscous fingering for the OW (or weakly wetting) case at the lab scale. Finally, to confirm our analysis of the WW and OW immiscible fingering conclusions at the lab scale, we present two experiments in a lab-scale bead pack where $$\left( {\mu_{{\text{o}}} /\mu_{{\text{w}}} } \right) = 100$$ μ o / μ w = 100 ; no fingering is seen in the WW case, whereas clear developed immiscible fingering is observed in the OW case.

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3