Protecting Parent-Well Production Using Far-Field Diverters in Unconventional Wells

Author:

Ajisafe F. O.1,Porter H.2,Kothare S.2,Colson E.2,Ellis R.1,Heaton N.1,Demars B.1,Mayerhofer M.1

Affiliation:

1. Liberty Energy, Houston, Texas, United States

2. Lime Rock Resources, Houston, Texas, United States

Abstract

Abstract The impact of fracture driven interaction (FDI) is an increasing concern in mature developed unconventional plays in the US. In this study, parent well production performance after infill well stimulation is evaluated to understand the effectiveness of far-field diverter in mitigating FDI's. Studies to determine if FDI's result in a negative or positive impact, have concluded that it varies from basin-to-basin (Miller et al 2016). In this project, the purpose of pumping far-field diverter is to mitigate wellbore sanding and production loss in existing parent wells. The far-field diverter pill includes a blend of multimodal particles to bridge the fracture tip, preventing excessive fracture length and height growth. Fracture modeling with a unique particle transport model is typically used to design the far-field diverter pill impact on fracture geometry. The pill design and contingency designs are executed in the infill well stimulation job, right after the pad step, in the beginning of the pump schedule. Optimization of the far-field diverter can be complemented with real-time pressure monitoring or cross-well fiber strain data on the parent well. Over the years, far-field diverter has, in one form or the other, been used for various applications in stimulation design. However, since mid-2010's, far-field diverter has been used to address growing concerns of FDI's observed in most mature plays in the US. In this study, since 2018, far-field diverters have been pumped in several wells for the purpose of mitigating the negative impact of FDI's between parent and child wells. While these jobs were operational successes, the next crucial step was to evaluate and quantify the effectiveness of the far-field diverter in mitigating production loss in the parent wells. It is important to note that the operator whose wells utilized far-field diverters, had experienced negative impact of FDI's in their parent wells in the form of production loss and sand in the wellbore which required clean outs at a significant cost. In this study, production data was evaluated comparing pre-stimulation production before shut-in and post-stimulation production after the parent wells were brought back online. Overall, about 75% of the parent wells protected show positive uplift in oil production. And about 80% of the child wells show superior or comparable production decline after about a year of production when compared with offset parent wells It is evident that far-field diverters for fracture geometry control in child wells can be extremely helpful in mitigating negative impact of FDI's. In unconventional reservoirs, where infill (child) well drilling is prevalent, the impact of far-field diverter in controlling fracture geometry has the potential to be a value added FDI mitigation technology to mitigate wellbore sanding and subsequent clean outs as well as optimize production performance of both child and parent wells. The early part of the project resulted in ~$2.5million in savings in well cleanup costs. In addition, fracture diagnostics along with production data evaluation can be highly beneficial in understanding the role of production depletion, completion design and well spacing on fracture driven interaction.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3