Infill Well Completion Technologies Mitigate Well Interference and Optimize Production on Multiwell Pad

Author:

Ajisafe Foluke1,Reid Mark2,Porter Hank2,George Lydia3,Wu Rhonna3,Yudina Kira3,Pena Alejandro1,Ejofodomi Efe1,Artola Pedro1

Affiliation:

1. Schlumberger

2. Lime Rock Resources

3. Former employee of Schlumberger

Abstract

Abstract Increased drilling of infill wells in the Bakken has led to growing concern over the effects of frac or fracture hits between parent and infill wells. Fracture hits can cause decreased production in a parent well, as well as other negative effects such as wellbore sanding, casing damage, and reduced production performance from the infill well. An operator had an objective to maximize production of infill wells and decrease the frequency and severity of frac hits to parent wells. The goal was to maintain production of the parent wells and avoid sanding, which had the potential to cause cleanouts. Infill well completion technologies were successfully implemented on multiwell pads in Mountrail County, Williston basin, to minimize parent-child well interference or negative frac hits on parent wells for optimized production. Four infill (child) wells were landed in the Three Forks formation directly below a group of six parent wells landed in the Middle Bakken. The infill well completion technologies used in this project to mitigate frac hits included far-field diverter, near-wellbore diverter, and real-time pressure monitoring. The far-field diverter design includes a blend of multimodal particles to bridge the fracture tip, preventing excessive fracture length and height growth. The near-wellbore diverter consists of a proprietary blend of degradable particles with a tetra modal size distribution and fibers used to achieve sequential stimulation of perforated clusters to maximize wellbore coverage. Hydraulic fracture modeling with a unique advanced particle transport model was used to predict the impact of the far-field diverter design on fracture geometry. Real-time pressure monitoring allowed acquisition of parent well pressure data to identify pressure communication or lack of communication and implement mitigation and contingency procedures as necessary. Real-time pressure monitoring was also used to optimize and validate the far-field diversion design during the job execution. The parent well monitored was 800 ft away from the closest infill well and at high risk for frac hits due to both the proximity to the infill well and depletion. In the early stages of the infill well stimulation, an increase in pressure up to 600 psi was observed in the parent well. The far-field diverter design was modified to combat the observed frac hit, after which a noticeable drop in both frequency and magnitude of frac hits was observed on the parent well. This is the first time the far-field diverter design optimization process was done in real time. After the infill wells stimulation treatment, production results showed a positive uplift in oil production for all parent wells at an average of 118%. Also, only two out of seven parent wells required a full cleanout, resulting in savings in well cleanup costs. Infill well production data was compared with the closest parent well landed in the same formation (Three Forks). At about a year, the best infill well production was only 10% less than the parent well with similar completion design and the average infill well production approximately 18% less than the parent well. Considering the depletion surrounding the infill wells, production performance exceeded expectations.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3