Understanding and Mitigating Depletion Effects in Infill Wells for Optimized Production

Author:

Ajisafe Foluke1,Reid Mark2,Porter Hank2,Fox Derek2,Wigger Eric1,Drouillard Matthew1,Defeu Cyrille1,Marquez Aleida1,Vidma Konstantin1,Abivin Patrice1,Ajose-Ogunlana Damilola1,Srinivasan Karthik1

Affiliation:

1. Schlumberger

2. Lime Rock Resources

Abstract

Abstract Production interference between parent and infill wells has become of utmost importance in unconventional reservoirs across the U.S. due to sub-par production performance of child wells as well as possible loss of production to the parent well. To mitigate production interference between parent and child wells, operators have applied various measures such as refracturing, repressurization of the parent well, and reducing child well stimulation jobs; these measures can be costly and yield mixed results. This study demonstrates the benefits of reservoir modeling to understand the effects of parent well production depletion on child wells at different well spacing as well as the use of successful mitigation strategies such as near-wellbore diverters and fracture geometry control to mitigate frac hits between wells drilled as close as 800 ft apart. A multidisciplinary integrated workflow was applied in a multiwell pad in the Bakken consisting of one parent and two child wells. The parent well was completed and produced for about 7 years, after which the two child wells were drilled 1,300 and 800 ft, respectively, on each side of the parent well. High-tier vertical logs were used to build a geomechanical and petrophysical model for the pad. The model was used for hydraulic fracture modeling and production history match of the parent well, after which the reservoir pressure depletion profile was used in a geomechanics simulator for an updated in situ stress state at 7 years. The updated stress state was then used for fracture modeling of the two child wells. The child well 800 ft from the parent well showed more hydraulic fractures directly hitting the parent well. The child well at 1,300 ft showed fewer hydraulic fractures directly hitting the parent well. The pressure depletion profile around the parent well had more negative impact on the child well at 800 ft away compared to the child well at 1,300 ft away because of its proximity. To eliminate this negative effect, fracture geometry control technology was used in the hydraulic fracture model for the child well 800 ft away from the parent well. It showed to be successful in reducing the occurence of frac hits to the parent well, diverting hydraulic fracture growth away from depleted regions around the parent well. During the actual operation, the results were confirmed with high-frequency pressure monitoring. Details of the field deployment of the fracture geometry control technology are discussed in detail in Vidma et al. (2019). No pressure communication was observed in stages pumped with the fracture geometry control technology. The child wells were completed and put on production without any sanding damage to the parent well, saving the operator approximately USD 400,000 and more than 2 weeks of deferred production if cleanout had been required. Actual production results showed superior performance in the child well at 1,300 ft away compared to the child well at 800 ft away. This confirms that the pressure depletion profile had more impact on the child well 800 ft away compared to the child well at 1,300 ft. Reservoir modeling is critical to understanding the level of pressure depletion in a producing well and its effect on child wells at different well spacing. It has also proven helpful in designing an optimum fracture geometry control pill to minimize the occurrence of frac hits that could damage parent well productivity.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3