Dynamics Vibration Prediction and Comparison with Downhole Data Measurements in Unconventional Wells

Author:

Mahjoub Mohamed1,Nguyen Khac-Long1,Menand Stéphane1,Tran Quang-Thinh2,Andrianoely Marie-Ange2,Manin Lionel2,Dufour Régis2,Isbell Matt3

Affiliation:

1. DrillScan

2. Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS

3. Hess Corp

Abstract

Abstract During drilling operations, high drillstring vibrations may originate from various sources, namely, the bit-rock interaction, drillstring-wellbore contacts, stick-slip phenomena, fluid-structure interaction, and mass unbalances. Excessive vibrations may induce drilling equipment failures (fatigue, cracking, washouts, and ruptures), which can be costly and catastrophic. Therefore, it is crucial to accurately model the drillstring dynamics in order to help drilling engineers make better decisions and avoid harmful vibrational effects. This paper proposes a numerical model developed in the time domain to estimate the drillstring lateral, axial, and torsional dynamics. It is based on the finite element method coupled with the Craig-Bampton reduction method (Craig and Bampton 1968) to reduce computation time. The drillstring-wellbore contact forces are automatically determined and may occur on both tool-joints and drill pipe bodies, and the drilling fluid is accounted for by its inertial and frictional effects. The efficiency, accuracy, and predictive capacities of the model are assessed by comparing the computational results to downhole measurements for a case study of a non-conventional well. A good agreement for both lateral and torsional vibrations is obtained. The numerical results are used for a more detailed analysis on the lateral and torsional vibrations of the system. The evolution of lateral acceleration, from a forward to backward whirling tendency on the system, can then be assessed with the use of a spectral analysis. The novelty of this dynamics model is that it can portray a realistic geometry of a drilling assembly in 3D curved wells with the fluid presence and gives a complete study of the coupling phenomena between the axial, torsional, and lateral vibrations. The use of this novel dynamics model along with downhole data acquisition and wired pipe technology is one of the essential steps towards drilling automation to provide a better mitigation of drillstring vibrations.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3