Detailed Dynamics Modeling Helps to Assess the Effect of Stabilizer Design on Drill String Vibrations

Author:

Nguyen Khac-Long1,Mahjoub Mohamed1,Dao Ngoc-Ha1,Menand Stéphane1

Affiliation:

1. Helmerich & Payne

Abstract

Abstract Various stabilizer types are used in the industry, such as bladed stabilizers with straight or spiral blades, roller-reamers, and other emergent forms. Their designs are proved, via many in-field measurements, to have a significant impact on vibration levels. Although experimental data is extremely valuable to rank the available design options, testing the different stabilizers can be costly and sometimes risky. In addition, in-field conditions can be difficult to control making the comparisons between stabilizers even more complicated. Assessing the design impact using numerical simulations represents an interesting alternative to provide objective comparisons based on tests in a controlled environment. When a stabilizer is rotating, the contact forces between its different blades and the wellbore are transient. A static approach like torque and drag or directional models is then insufficient to properly investigate the stabilizer's design characteristics. Therefore, a time-domain dynamics approach is adopted in this work. A detailed modeling of bladed stabilizers including the blade geometry (number of blades, spirality, and blade width) and friction characteristics are introduced in an existing time-domain model. These characteristics are used to compute the contact forces between the wellbore and each individual blade. This numerical model is applied to quantify the effect of stabilizer design in terms of vibration, from straight blades to highly spiraled blades. First, a parametric study of blade design and wellbore inclination effects on stabilizer vibrations is presented by considering different stabilizers in straight well conditions. Simulations of an actual drill string configuration in an unconventional well is discussed. For vertical, curved, and horizontal sections, the acceleration levels, contact forces, and rotation speeds are investigated. These analyses can constitute guidelines about stabilizer design to minimize vibrations. The novelty of this work is to introduce the geometry details of the stabilizers in the time-domain dynamics to differentiate designs in terms of likelihood to trigger vibrations.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3