Integrated Work Flow of Preserving Facies Realism in History Matching: Application to the Brugge Field

Author:

Chang Yuqing1,Stordal Andreas S.1,Valestrand Randi1

Affiliation:

1. International Research Institute of Stavanger

Abstract

Summary Data assimilation with ensemble-based inversion methods was successfully applied for parameter estimation in reservoir models. However, in certain complex-reservoir models, it remains challenging to estimate the model parameters and to preserve the geological realism simultaneously. In particular, when handling special-reservoir model parameters such as facies types concerning fluvial channels, one must realize that geological realism becomes one of the key concerns. The main objective of this work is to address these issues for a complex field with a newly extended version of a recently proposed facies-parameterization approach coupled with an ensemble-based data assimilation method. The proposed workflow combines the new facies parameterization and the adaptive gaussian mixture (AGM) filter into the data assimilation framework for channelized reservoirs. To handle discrete-facies parameters, we combine probability maps and truncated Gaussian fields to obtain a continuous parameterization of the facies fields. For the data assimilation, we use the AGM filter, which is an efficient history matching approach that incorporates a resampling routine that allows us to regenerate facies fields with information from the updated probability maps. This work flow is evaluated, for the first time, on a complex field case—the Brugge field. This reservoir model consists of layers with complex channelized structures and layers characterized by reservoir properties generated with variograms. With limited prior knowledge on the facies model, this work flow is shown to be able to preserve the channel continuity while reducing the reservoir model uncertainty with AGM. When applied to a complex reservoir, the proposed work flow provides a geologically consistent and realistic reservoir model that leads to improved capability of predicting subsurface flow behaviors.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3