Large Sample Properties of the Adaptive Gaussian Mixture Filter

Author:

Stordal Andreas S.1,Karlsen Hans A.2

Affiliation:

1. IRIS, Stavanger, Norway

2. Department of Mathematics, University of Bergen, Bergen, Norway

Abstract

In high-dimensional dynamic systems, standard Monte Carlo techniques that asymptotically reproduce the posterior distribution are computationally too expensive. Alternative sampling strategies are usually applied and among these the ensemble Kalman filter (EnKF) is perhaps the most popular. However, the EnKF suffers from severe bias if the model under consideration is far from linear. Another class of sequential Monte Carlo methods is kernel-based Gaussian mixture filters, which reduce the bias but maintain the robustness of the EnKF. Although many hybrid methods have been introduced in recent years, not many have been analyzed theoretically. Here it is shown that the recently proposed adaptive Gaussian mixture filter can be formulated in a rigorous Bayesian framework and that the algorithm can be generalized to a broader class of interpolated kernel filters. Two parameters—the bandwidth of the kernel and a weight interpolation factor—determine the filter performance. The new formulation of the filter includes particle filters, EnKF, and kernel-based Gaussian mixture filters as special cases. Techniques from particle filter literature are used to calculate the asymptotic bias of the filter as a function of the parameters and to derive a central limit theorem. The asymptotic theory is then used to determine the parameters as a function of the sample size in a robust way such that the error norm vanishes asymptotically, whereas the normalized error is sample independent and bounded. The parameter choice is tested on the Lorenz 63 model, where it is shown that the error is smaller or equal to the EnKF and the optimal particle filter for a varying sample size.

Funder

Eni

Total

Petrobras

Research Council of Norway

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3