Matching the Performance of Saudi Arabian Oil Fields With an Electrical Model

Author:

Wahl W.L.1,Mullins L.D.1,Barham R.H.1,Bartlett W.R.2

Affiliation:

1. Socony Mobil Oil Co., Inc.

2. Arabian American Oil Co.

Abstract

Abstract This paper describes an electrical model and its application to the analysis of four reservoirs in Saudi Arabia. The model has 2,501 mesh points and represents 35,000 sq miles of the Arab-D member. Details of modeling such as mesh size, control problems and standards of performance in matching reservoir history are discussed. The particular performance match achieved for the Arad-D member is presented. Details such as permeability barriers, aquifer depletion and interference between oil fields are given. The performance match realized in the Abqaiq pool is presented in detail. Introduction The resistor-capacitor network and associated control equipment described in this paper comprise an electrical analog of a reservoir system. Similar equipment has been used to study the transient response of reservoirs for many years. The unique feature of the model and application to be described is the extremely large size of the model and reservoir system, and the detail observed in simulating the reservoir with the model. The Arabian American Oil Co. first became interested in analog computers for simulation of oil reservoirs in 1949. Since that time, several models have been developed, each more elaborate and refined so that the reservoir system might be more closely simulated. The current model is the latest in a series designed, built and operated by the Field Research Laboratory of Socony Mobil Oil Co. in collaboration with Aramco. It has been and continues to be used to study the regional performance of the Arab-D member limestone reservoir. The Arab-D member is one of the Middle East's most prolific producing horizons. THE MODEL The theory of simulating a reservoir system with an electrical system has been presented in the literature. Therefore, this paper will not discuss the theoretical aspect of the problem except to point out the correspondence between the fluid system and electrical system, as shown in Table 1.In general, the complete model is made up of input devices, output devices, central control and a resistance- capacitance (RC) network. At times, the RC network alone is referred to as the "model". However, it should be evident from the text which meaning is attached to the word "model". A discussion of the equipment follows. THE RESISTANCE-CAPACITANCE NETWORK The RC network consists of 2,501 capacitance decades interconnected through 4,900 resistance decades. The components are arranged to form a rectangular network of 2,501 mesh points in a 41- X 61-mesh array. Imposing the mesh grid system on the continuous reservoir system divides the reservoir into discrete areal segments. These discrete segments may be of various sizes. More precisely, the mesh size need not be uniform throughout the model. The RC network is fabricated in two sections which are connected at the top, An inside view of the "tunnel" formed by the two sections is shown in Fig. 1. The height and width of the tunnel are shown in the figure. Numerals appear along the bottom and along the back opening of the tunnel. These numbers denote the x and y coordinate positions of mesh points. Fig. 2 presents a rear view of one-half the model. The length dimensions of the model, as well as a rear view of the capacitor decades, are shown in this figure. The control dials used in adjusting the resistance and capacitance values on the model can be seen in the enlarged portion of the model shown in Fig. 3.The electrical capacity at any mesh point can range from 0 to 1.0 microfarads set to the nearest tenth of a microfarad. The electric resistance connecting any two mesh points can range from 0 to 9,990,000 ohms set to the nearest 1,000 ohms. External capacitors may be added to any or all mesh points if the need arises. The values of electrical resistance and capacitance are adjusted manually by manipulating the two types of decade units. INPUT EQUIPMENT A considerable quantity of equipment is used to control the input to the RC network. TABLE 1 - CORRESPONDENCE BETWEEN FLUID AND ELECTRICAL SYSTEMS Fluid System Electrical System Item Units Item UnitsReservoir Pressure psi Voltage Volts Reservoir Production Reservoir B/D Current MicroamperesRate orInjectionRate Fluid Capacitance Reservoir bbl/psi Electrical MicrofaradsCapacitance Transmissibility, darcy-ft Electrical Mhos/cp Conductivity Real Time Months Model Time Seconds JPT P. 1275^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3