Data-Driven Reduced-Order Models for Volve Field Using Reservoir Simulation and Physics-Informed Machine Learning Techniques

Author:

Behl M. V.1ORCID,Tyagi M.2ORCID

Affiliation:

1. Louisiana State University

2. Louisiana State University (Corresponding author)

Abstract

Summary Reservoir simulation is the industry standard for prediction and characterization of processes in the subsurface. However, large gridblock counts simulation is computationally expensive and time-consuming. This study explores data-driven reduced-order models (ROMs) as an alternative to detailed physics-based simulations. ROMs that use neural networks (NNs) effectively capture nonlinear dependencies and only require available operational data as inputs. NNs are usually labeled black-box tools that are difficult to interpret. On the other hand, physics-informed NNs (PINNs) provide a potential solution to these shortcomings, but they have not yet been applied extensively in petroleum engineering. In this study, a black-oil reservoir simulation model from Volve public data release was used to generate training data for an ROM leveraging long short-term memory (LSTM) NNs’ temporal modeling capacity. Network configurations were explored for their optimal configuration. Monthly oil production was forecast at the individual wells and full-field levels, and then validated against real field data for production history to compare its predictive accuracy against the simulation results. The governing equations for a capacitance resistance model (CRM) were then added to the reservoir-scale NN model as a physics-based constraint and to analyze parameter solutions for efficacy in characterization of the flow field. Data-driven ROM results indicated that a stateless LSTM, with single time lag as input, generated the most accurate predictions. Using a walk-forward validation strategy, the single well ROM increased prediction accuracy by about 95% average when compared with the reservoir simulation and did so with much less computational resources in short time duration. Physical realism of reservoir-scale predictions was improved by the addition of CRM constraint, demonstrated by the removal of negative flow rates. Parameter solutions to the governing equation showed good agreement with the field-scale streamline plots and demonstrated the ROM ability to detect spatial irregularities. These results clearly demonstrate the ease with which ROMs can be built and used to meet or exceed the predictive capabilities of certain time-history production data using the reservoir simulation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3