Application of the Producer-Based Capacitance Resistance Model to Undersaturated Oil Reservoirs in Primary Recovery

Author:

Parra José E.1ORCID,Samaniego-V Fernando2,Lake Larry W.3

Affiliation:

1. Universidad Nacional Autónoma de México (UNAM) (Corresponding author)

2. Universidad Nacional Autónoma de México (UNAM)

3. The University of Texas at Austin

Abstract

Summary We investigated the application and usefulness of the producer-based representation of the capacitance resistance model (CRM) to characterize single and multiwell undersaturated oil reservoirs during primary recovery. The CRM is a physics-based, data-driven method that has been amply used to model reservoirs under different recovery stages, particularly during flooding processes. However, there have been very few applications to primary recovery. The previous work on primary recovery used the rate and bottomhole pressure (BHP) data to calculate the time constant or storage capacity, and the productivity index (PI) associated with each production well. Here, we incorporate popular productivity models in CRM, making the results comparable with those from pressure transient analysis (PTA) or rate transient analysis (RTA). We also investigate various topics that have not been discussed or that deserve a further explanation to include CRM in the reservoir engineering toolbox. These comprise constant and variable rate wells, transient flow, well location, well geometry, anisotropy, and different types of reservoir heterogeneity. CRM is systematically compared and validated against analytical and numerical models of single and multiwell reservoirs. We also use it to characterize flow in a real oil reservoir . Our results demonstrate that CRM can provide important parameters for reservoir characterization using BHP and rate data acquired from routine production operations, that is, without the need to shut in wells or perform dedicated tests. It yields reasonable estimates of flow resistance properties that depend on reservoir geology, petrophysics, and well condition. It can also be applied during successive time intervals to assess changes in well-reservoir properties, such as drainage radius or the PI, an indication of well damage. Most importantly, we show that for several well-reservoir cases with multiple complexities, CRM can accurately capture the reservoir size, or the drainage pore volume (PV) associated with each well in developed fields, which enables the calculation of average pressure and helps assess interwell communication and opportunities for infill drilling.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference35 articles.

1. Variable-Rate Reservoir Limits Testing;Blasingame,1986

2. An Electrical Device for Analyzing Oil-Reservoir Behavior;Bruce;Trans AIME,1943

3. Pressure-Transient Testing of Gas Reservoirs With Edge-Waterdrive;Chen;SPE Form Eval,1996

4. Chitsiripanich, S . 2015. Field Application of Capacitance-Resistance Models to Identify Potential Location for Infill Drilling. MS thesis, The University of Texas at Austin, Austin, Texas, USA.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3