Intelligent Prediction of Differential Pipe Sticking by Support Vector Machine Compared With Conventional Artificial Neural Networks: An Example of Iranian Offshore Oil Fields

Author:

Jahanbakhshi Reza1,Keshavarzi Reza1,Aliyari Shoorehdeli Mahdi2,Emamzadeh Abolqasem3

Affiliation:

1. Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University,Tehran, Iran

2. K.N. Toosi University of Technology

3. Islamic Azad University

Abstract

Summary Differential pipe sticking (DPS) is one of the most conventional and serious problems in drilling operations that imposes some extra costs to companies. This phenomenon originates mainly from improper mud properties, bottomhole assembly (BHA) (contacting area), still pipe time, and differential pressure between the formation and the drilling mud. Investigation on various conditions that lead to DPS makes it possible to develop some preventive treatments to avoid this problem's occurrence. In the past, statistical methods were applied in this area, but recently artificial neural network (ANN) approaches are frequently being used. ANNs have some priorities over conventional statistical methods such as the model-free form of predictions, tolerance to data errors, data-driven nature, and fast computation. On the other hand, the designed ANNs have some shortcomings and restrictions as they are developed to predict problems. In this paper, to solve most of the existing disadvantages of ANNs, a novel support-vector machine (SVM) approach has been developed to predict a DPS occurrence in horizontal and sidetracked wells in Iranian offshore oil fields. The results from the analysis have shown the potential of the SVM and ANNs to predict DPS, with the SVM results being more promising.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3