Real-Time Detection of Stuck Pipe Utilizing Hybrid AI-Physical Prediction Models

Author:

Malki Mohammed A.1,Abughaban Mahmoud F.1,Alshawabkeh Albara' A.2,Teixeira Guimaraes Thiago2

Affiliation:

1. Saudi Aramco, KSA

2. Intelie by Viasat, USA

Abstract

Abstract Effective stuck pipe prediction becomes more challenging and requires real-time advanced analysis of all available drilling data. This paper presents an innovative model to predict stuck pipe incidents. A machine-learning model based on intensive feature-engineering integrated with physical models has been developed. It automates real-time drilling data collection, analysis, and detects the patterns for the most dominating drilling parameters values to achieve the success criteria of early warning signs of stuck pipe incidents. It has been applied on two equal sets of wells either stuck or non-stuck incidents. The model triggers alarms reliably and early before the stuck pipe incidents happen and therefore corrective actions could be taken properly in advance.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3