Stuckpipe Prediction Based on Artificial Intelligence and Real-Time Sub/Surface Parameters Indicators Measurements

Author:

Mohammed A. Malki1,Mahmoud F Abughaban1,Thiago T Guimaraes2,Albara’ A Alshawabkeh2

Affiliation:

1. Saudi Aramco, KSA

2. Intelie by Viasat, USA

Abstract

Abstract Drilling operations should be as conservative as possible. These operations will become more critical in extensively depleted reservoirs. The drilling crew have to manage the allowable surface parameters in order to ensure smooth operations and can no longer rely on traditional operations either balanced or overbalanced drilling. This paper presents a model to predict stuckpipe incidents based on supervised machine-learning and real-time feature-engineering integrated with rig physical parameters. It avails of the real-time drilling data collection, fixes data issues, and analyzes the patterns within these parameters values to identify the warning signs of stuckpipe incidents. It has been tested on both types of wells either stuck or non-stuck incidents. The model was able to give alarms of downhole incidents early before the stuckpipe incidents happen to allow for time window and help the rig crew go for proactive actions to mitigate these risks.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3