A Back-Of-The-Envelope Model to Estimate Dimensions for Every Shale Frac

Author:

Weijers Leen1,Agarwal Karn1,Lolon Ely1,Fontana DK1,Mayerhofer Mike1,Defeu Cyrille1,Haustveit Kyle1,Haffener Jackson1

Affiliation:

1. Liberty Energy

Abstract

AbstractCreating a reliable, calibrated frac model used to be a long and expensive task in frac optimization. Today, with the proliferation of fracture diagnostics to calibrate models, simple frac dimensions can be calculated from indirect measurements on most North American shale fracs.Through the US Shale Revolution, fracturing operations have increasingly focused on pumping efficiencies. "Factory mode" operations today often allow little time for what used to be a lengthy optimization process of estimating fracture dimension sensitivity to job design changes for well placement selection and optimization of production economics. While some new fracture diagnostics have been designed to do measurements without interfering with frac operations, the calibrated models that harness these measurements remain cumbersome.We have developed a practical engineering tool that can extend the use of direct measurements to all shale horizontal well frac jobs. Unlike complex models that require lots of inputs and that are only routinely run on a few stages in a limited fraction of all North American shale wells, this Back-of-the-Envelope (BoE) model can be run effectively on every horizontal well stage. To date, it has been run on almost a quarter million stages. The BoE model provides two main advantages: (1) utilization of average basin diagnostic feedback and model calibration for more realistic results, and (2) augmenting more complex models on a much larger scale through a simpler workflow.The BoE model incorporates key fundamental processes in elliptical-shaped hydraulic fracture growth, including conservation of mass; limited entry-driven cluster distribution into simultaneously growing equal-sized multiple fractures; and Sneddon width profile with calibrated coupling over the fracture height. The physical model is further constrained by assuming a fixed half-length-to-height ratio from direct observation of hydraulic fracture growth.The BoE fracture model can be described with a few different rock mechanical fracture design and treatment parameters and ISIP measurements at the end of each fracture treatment stage. A key feature of the BoE model is that direct measurements are directly incorporated as an inherent calibration step. The model is anchored to basin closure stress measurements from DFITs and calibrated with past fracture geometry measurements, for example from Volume-to-First-Response data provided through Sealed Wellbore Pressure Monitoring (SWPM), or from other direct fracture diagnostics.In our paper, we present the results of this simple model and compare it with more complex fracture modeling efforts and fracture diagnostic results in a few major US shale basins.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3