An Eagle Ford Case Study: Monitoring Fracturing Propagation Through Sealed Wellbore Pressure Monitoring

Author:

Brinkley Kourtney1,Ingle Trevor1,Haffener Jackson1,Chapman Philip1,Baker Scott1,Hart Eric1,Haustveit Kyle1,Roberts Jon1

Affiliation:

1. Devon Energy

Abstract

Abstract This case study details the use of Sealed Wellbore Pressure Monitoring (SWPM) to improve the characterization of fracture geometry and propagation during stimulation of inter-connected stacked pay in the South Texas Eagle Ford Shale. The SWPM workflow utilizes surface pressure gauges to detect hydraulically induced fracture arrivals athorizontal monitor locations adjacent to the stimulated wellbore (Haustveit et al. 2020). A stacked and staggered development in Dewitt County provided the opportunity to jointly evaluateprimary completion and recompletion efforts spanning three reservoir target intervals. Fivemonitor wells at varying distances across the unit were employed for SWPM during the stimulation of four wells. An operational overview, analysis of techniques, correlation with seismic attributes, image log interpretations, and fracture model calibration are provided. Outputs from this workflow allow for a refined analysis ofthe overall completion strategy. The high-density, five well monitor array recorded a total of 160 fracture arrivals at varying vertical and lateral distances, with far-field fracture arrivalsprovidingsignificant insight into propagation rates and geometry. Apronounced trend occurred in both arrival frequency and volumes pumped as monitor locations increased in distance from the treatment well. Specific to target zone isolation, it was identified that traversing vertically in section through a high stress interval yielded a 30% reduction inarrival frequency. An indirect relationship between horizontal distance and arrival frequency was also observed when monitoring from the same interval. A decrease in fracture arrivals from 70% down to 8% was realized as offset distance increased from 120 to 1,700 ft. The results from this study have proven to be instrumental in guiding interdisciplinary discussion. Assessing fracture geometry and propagation during stimulation, particularly in the co-development of a stacked pay reservoir, is paramount to the determination of proper completion volume, perforation design, and well spacing. Leveraging the observations of SWPM ultimately provides greater confidence in field development strategy and economic optimization.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3