Understanding the Hydraulic and Conductive Half Lengths in the Bakken/Three Forks Play – Coupling Sealed Wellbore Pressure Monitoring SWPM & Chow Pressure Group CPG

Author:

Ballinger Bradley1,Green Brett1,Vajjha Pavan1,Haffener Jackson1,Edwards Mark1,Almasoodi Mouin1,Haustveit Kyle1

Affiliation:

1. Devon Energy

Abstract

Abstract In development of the Bakken/Three Forks play, it is crucial to obtain a strong understanding of not just the hydraulic fracture geometry, but also what portion of those hydraulic fractures are conductive. If both parameters and their interactions are not fully understood, then development of the play could be severely compromised due to unoptimized well spacing and completion design. This study represents a two-pronged approach to better understand this interaction. The first step was to perform a Sealed Wellbore Pressure Monitoring (SWPM) test to gain an understanding of hydraulic half-length (Haustveit. et al. 2020). Then, a conductive interference test was performed to utilize Chow Pressure Group (CPG) to understand the conductive half-length (Chu et al. 2018). This paper will address the results from these two tests and how they can be coupled together to optimize the unique relationship between well spacing and completion design to maximize the value in development of the Bakken/Three Forks play or any play both new and mature. The SWPM test was successfully completed on a nine well zipper frac operation consisting of two pads (four well pad/five well pad) where four Middle Bakken and five Three Forks wells were stimulated. The SWPM results provided insight into the hydraulic fracture geometry of the stimulation in multiple scenarios of vertical and lateral separation, as well as various amounts of offsetting depletion. The next step in the analysis was performing a CPG interference test on the five well zipper pad. The CPG results provided insight into not just the initial conductive geometry, but a three month follow up test also showed how the conductivity of the fractures rapidly degrade over time. By coupling the SWPM and CPG analysis together, an operator can learn where hydraulic fractures are growing and what portion of those fractures are conductive. This project design of coupled SWPM and CPG provided multiple learnings: Hydraulic fractures for a well in either the Middle Bakken or Three Forks grow through the Lower Bakken Shale and create large geometries in both the landing and staggered zone Hydraulic growth is faster and geometry larger growing towards modern completion parents versus vintage completion parents A relatively small portion of the hydraulic geometry is conductive, and although early time wells communicate through the Lower Bakken Shale, a 3-month interference test shows closure between the Three Forks and Middle Bakken. From these learnings, an optimized development is being developed for the Bakken/Three Forks play and a similar workflow can be applied to any play both new or mature to maximize value and returns for operators.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3