Affiliation:
1. University of Texas at Austin
Abstract
Summary
Foams for subsurface applications are traditionally stabilized by surfactants. The goal of this work is to study foam stabilization by nanoparticles—in particular, by in-situ surface-hydrophobization of hydrophilic nanoparticles. The interfacial properties of the nanoparticles were modulated by the attachment of short-chain surface modifiers (alkyl gallates) that render them partially hydrophobic, but still fully dispersible in water. First, static foams were generated with nanoparticles with varying concentrations of surface modifiers. The decay of foam height with time was measured, and half-lives were determined. Optical micrographs of foam stabilized by surface-modified nanoparticles (SMNPs) and surfactant were recorded. Second, aqueous foams were created in-situ by coinjecting the SMNP solutions with nitrogen gas through a Berea sandstone core at a fixed quality. Pressure drop across the core was measured to estimate the achieved resistance factor. These pressure-drop results were then compared with those of a typical surfactant (alpha olefin sulfonate, alkyl polyglucoside) under similar conditions. Finally, oil-displacement experiments were conducted in Berea cores with surfactant and SMNP solutions as foaming agents (coinjection with nitrogen gas). A Bartsch shake test revealed the strong foaming tendency of SMNPs even with a very low initial surface-modifier concentration (0.05 wt%), whereas hydrophilic nanoparticles alone could not stabilize foam. The bubble texture of foam stabilized by SMNPs was finer than that with surfactants, indicating a stronger foam. As the degree of surface coating increased, the resistance factor of SMNP foam in a Berea core increased significantly. The corefloods in the sandstone cores with a reservoir crude oil showed that immiscible foams with SMNP solution can recover a significant amount of oil (20.6% of original oil in place) over waterfloods.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献