Experimental and data-driven analysis for predicting nanofluid performance in improving foam stability and reducing mobility at critical micelle concentration

Author:

Issakhov Miras,Khanjani Maral,Muratkhozhina Adiya,Pourafshary Peyman,Aidarova Saule,Sharipova Altynay

Abstract

AbstractApplication of surfactant-based foam flooding is an effective approach to reduce mobility and control early breakthrough. Despite the proper performance of surfactant-based foams in decreasing the channeling of the flooded gas and water, high pressure, high temperature, and high salinity of the reservoirs put some limitations on the foam flooding efficiency. Nanoparticles are used to improve the quality of the foams, enhance stability, and transcend the limitations. Although there are many benefits of using nanoparticles in foam flooding, their performance at surfactant critical micelle concentration (CMC) is not fully investigated and the optimum nanoparticle concentration is not specified. In this study, an experimental investigation using nanosilica with surfactants at CMC to improve the stability (half-life) and mobility reduction factor (MRF) has been conducted. Furthermore, data from the literature were collected and analyzed to evaluate the change in MRF and stability for a nanofluid-based foam at CMC. Both experimental results and literature data showed that application of nanofluid-based foam is a successful approach to develop a more stable foam with lower mobility. Nanoparticle (NP) concentration is the dominant parameter at different salinities and temperatures that affects foam flow through porous media. The range of 0.2–0.4 wt% is the optimum nanoparticle concentration to develop a strong foam with acceptable performance in controlling mobility.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

Springer Science and Business Media LLC

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3