Classification and Localization of Fracture-Hit Events in Low-Frequency Distributed Acoustic Sensing Strain Rate with Convolutional Neural Networks

Author:

Chen Mengyuan1,Tang Jin2,Zhu Ding2,Hill Alfred2

Affiliation:

1. Texas A&M University (Corresponding author)

2. Texas A&M University

Abstract

Summary Distributed acoustic sensing (DAS) has been used in the oil and gas industry as an advanced technology for surveillance and diagnostics. Operators use DAS to monitor hydraulic fracturing activities, examine well stimulation efficacy, and estimate complex fracture system geometries. Particularly, low-frequency DAS can detect geomechanical events such as fracture hits because hydraulic fractures propagate and create strain rate variations in the rock. Analysis of DAS data today is mostly done post-job and subject to interpretation methods. However, the continuous and dense data stream generated live by DAS poses the opportunity for more efficient and accurate real-time data-driven analysis. The objective of this study is to develop a machine learning-based workflow that can identify and locate fracture-hit events in simulated strain rate responses correlated with low-frequency DAS data. In this paper, “fracture hit” refers to a hydraulic fracture originating from a stimulated well intersecting an offset well. We start with building a single fracture propagation model to produce strain rate patterns observed at a hypothetical monitoring well. This model is used to generate two sets of strain rate responses with one set containing fracture-hit events. The labeled synthetic data are then used to train a custom convolutional neural network (CNN) model for identifying the presence of fracture-hit events. The same model is trained again for locating the event with the output layer of the model replaced with linear units. We achieved near-perfect predictions for both event classification and localization. These promising results prove the feasibility of using CNN for real-time event detection from fiber-optic sensing data. Additionally, we use edge detection techniques to recognize fracture-hit event patterns in strain rate images. The fracture-hit location can be identified using recognized pixels in the image. The accuracy of edge detection-based location identification is also plausible, but edge detection is dependent on the assumption of pattern shape and image quality, hence it is less robust compared to CNN models. This comparison further supports the need for CNN applications in image-based real-time fiber-optic sensing event detection.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3