Monitoring the Pulse of a Well Through Sealed Wellbore Pressure Monitoring, a Breakthrough Diagnostic With a Multi-Basin Case Study

Author:

Haustveit Kyle1,Elliott Brendan1,Haffener Jackson1,Ketter Chris1,O'Brien Josh1,Almasoodi Mouin1,Moos Sheldon1,Klaassen Trevor1,Dahlgren Kyle1,Ingle Trevor1,Roberts Jon1,Gerding Eric1,Borell Jarret1,Sharma Sundeep1,Deeg Wolfgang2

Affiliation:

1. Devon Energy

2. Formerly Devon Energy

Abstract

Abstract Over the past decade the shale revolution has driven a dramatic increase in hydraulically stimulated wells. Since 2010, hundreds of thousands of hydraulically fractured stages have been completed on an annual basis in the US alone. It is well known that the geology and geomechanical features vary along a lateral due to landing variations, structural changes, depletion impacts, and intra-well shadowing. The variations along a lateral have the potential to impact the fluid distribution in a multi-cluster stimulation which can impact the drainage pattern and ultimately the economics of the well and unit being exploited. Due to the lack of low-cost, scalable diagnostics capable of monitoring cluster efficiency, most wells are completed using geometric cluster spacing and the same pump schedule across a lateral with known variations. A breakthrough patent-pending pressure monitoring technique using an offset sealed wellbore as a monitoring source has led to advancements in quantifying cluster efficiencies of hydraulic stimulations in real-time. To date, over 1,500 stages have been monitored using the technique. Sealed Wellbore Pressure Monitoring (SWPM) is a low-cost, non-intrusive method used to evaluate and quantify fracture growth rates and fracture driven interactions during a hydraulic stimulation. The measurements can be made with only a surface pressure gauge on a monitor well. SWPM provides insight into a wide range of fracture characteristics and can be applied to improve the understanding of hydraulic fractures in the following ways: Qualitative cluster efficiency/fluid distribution Fracture count in the far-field Fracture height and fracture half-length Depletion identification and mitigation Fracture model calibration Fracture closure time estimation The technique has been validated using low frequency Distributed Acoustic Sensing (DAS) strain monitoring, microseismic monitoring, video-based downhole perforation imaging, and production logging. This paper will review multiple SWPM case studies collected from projects performed in the Anadarko Basin (Meramec), Permian Delaware Basin (Wolfcamp), and Permian Delaware Basin (Leonard/Avalon).

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3