Uniform Fracture Growth from Horizontal Wells with Multistage Plug-and-Perf: An Application of Engineered Solid Particulate Diverters

Author:

Fragachan Francisco1,Omer Mohammed1,Huang Jian1

Affiliation:

1. Weatherford International

Abstract

Abstract To stimulate a reservoir efficiently, multistage plug-and-perf completion and fracturing technologies are widely utilized to create multiple hydraulic fractures along a horizontal wellbore. However, excessive field cases and lab tests evidenced that, the simultaneous initiation and propagation of multiple fractures within a stage could compete with each other, cause uneven fluid and proppant partition into each placed cluster. Resulting in low cluster efficiency and non-uniform fracture development. Solid particulate diverters can aid to influence the fluid distribution between open clusters to optimize stimulation efficiency. The objective of this study is to use numerical models to thoroughly investigate the functionality of particulate system in fracturing process and optimize the completion and stimulation strategy under specific downhole conditions. In this study, both CFD-DEM model and a 3D fracture simulator are employed to model fluid diversion and fracturing process for wells completed with plug-and-perf technique. For a field case study, sensitive analyses were performed to quantify the impact of completion design and pumping strategy on the resulted stimulation efficiency. The overall conductive reservoir volume is predicted to compare the cluster efficiency between different design scenarios. Thereafter, the stimulation efficiency of placed perforation clusters is analyzed and optimized with engineered solid particulate diverters. For the presented particulate diversion technique, both in-stage and inter-stage fluid diversion are operationally feasible. From our analysis, engineered solid particulate diverters can effectively plug the active perforation clusters and build-up enough pressure to divert fracturing fluid into non-active perforation clusters to create additional fractures. Proper number of diverter pills and adequate pumping schedule can boost the cluster efficiency and eventually increase the conductive reservoir volume. Through a field case study, the presented geomechanical analyses showed that the diverter design and operational parameters can be customized to enhance cluster efficiency. By adjusting completion design, the usage of particulate diverters can be optimized accordingly to maximize the stimulation efficiency. With the proposed efficient design, all the planned perforation clusters can develop and propagate hydraulic fractures and contribute to the overall production.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3