Using Advance Modelling Techniques to Design Diversion for Acidizing, Fracturing & Re-Fracturing

Author:

Omer Mohammed1,Fragachan Francisco E.1

Affiliation:

1. Weatherford International

Abstract

AbstractStimulation fluids injected into a reservoir generally take the path of least resistance, i.e., zones of high permeability where often the stimulation is not as important as other critical under-stimulated areas. This leads to under-stimulated zones, which negatively impacts the production, or over-stimulated zones, which might lead to softening of the wellbore rock and, with time, might have also a negative effect on production. The efficiency of a fracturing, acidizing, or re-fracturing treatment depends on maximizing its contact with the zone of interest and uniform distribution in the reservoir. To achieve this goal, existing fluid paths must be efficiently and temporarily blocked, therefore diverting the treatment towards under-stimulated areas, a process known as diversion. The main goal of diversion is to distribute the stimulation fluid across the reservoir uniformly.An analytical model based on computational fluid dynamics and discrete element modelling has been developed to optimize the different parameters that affect an optimum diversion. The parameters that effect the efficiency of plugging are flow rate, PSD (Particle Size Distribution), concentration, carrier fluid, and the displacement rate during diverter injection. The modelling can be customized depending upon the type of application.This paper will summarize an engineering workflow to optimize diversion design and present successful cases globally of biodegradable, bi-particulate diversion applications in matrix acidizing enabling a production increase of 140%, re-fracturing applications (which led to the formation of new fractures in the new zones not previously stimulated), and uniform fracture growth from horizontal wells.We believe that an engineering approach is critical to the success of matrix acidizing, fracturing, and re-fracturing. The results demonstrate the effectiveness of advance modelling and bi-particulate diverters in minimizing the formation damage, evenly distributing the stimulation fluid, and thereby increasing its effectiveness and retarding the softening of rock, and to enhance the production across the target zone. The lessons learned from various applications of these engineered bi-particulate diverters can be applied for stimulation design and planning

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3