Enhancing Well Performance via In-Stage Diversion in Unconventional Wells: Physics and Case Studies

Author:

Fragachán F. E.1,Shahri M. Pordel1,Arnold D. M.1,Babey A. G.1,Smith C. S.1

Affiliation:

1. Weatherford

Abstract

Abstract Production rates in unconventional plays can decline dramatically, up to 70% in the first year. Refracturing—by today's understanding—is a remedial production operation often done because original fracturing failed to contribute any significant amount of flow, performance of the initial completion has degraded over time to below operationally or economically acceptable limits, or significant unfractured pay exists in the well. Developments in nondamaging, degradable diverters with outstanding plugging efficiency have opened new opportunities for protecting existing fractures by plugging them and then fracturing zones that were previously bypassed because of inefficient zone coverage or refracturing zones that were inefficiently fractured initially. In fact, these new diverters enable zonal isolation for horizontal wells with multiple perforation clusters and for temporarily plugging perforations for re-stimulation treatments instead of squeezing the perforations and sealing them off. With multistage operations becoming the industry norm, operators need easily deployable diversion technologies that will protect previously stimulated perforations and enable adding new ones to untreated perforations or bypassed zones. This paper reviews in-stage Diversion, including a brief discussion of diverter candidate selection in terms of production and risk assessment to ensure return on investment. Also included is an explanation of underlying mechanisms controlling the diversion process and the use of advanced modeling techniques to enhance efficiency of diversion operations. Then a case study is discussed to highlight how temporary and degradable chemistry can be used to enhance zone coverage, to provide temporary isolation between zones in shale fracturing operations, and to achieve multiple effective fracture treatments within the same stage. These degradable chemical diverting agents form a solid impermeable barrier or seal that in time will break or degrade to liquid form, leaving the existing zone that was diverted open to permit flow.

Publisher

SPE

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3