Evaluation of Self-Degradation and Plugging Performance of Temperature-Controlled Degradable Polymer Temporary Plugging Agent

Author:

Xu Hualei123ORCID,Zhang Liangjun123,Wang Jie123,Jiang Houshun123

Affiliation:

1. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China

2. Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, Yangtze University, Wuhan 430100, China

3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

Abstract

Temporary plugging diversion fracturing (TPDF) technology has been widely used in various oil fields for repeated reconstruction of high-water-cut old oil wells and horizontal well reservoir reconstruction. Previous studies have carried out in-depth study on the pressure-bearing law and placement morphology of different types of temporary plugging agents (TPAs) in fractures, but there are relatively few studies on TPA accumulation body permeability. To solve this problem, an experimental device for evaluating the TPA performance with adjustable fracture pores is proposed in this paper. Based on the test of fracturing fluid breaking time and residue content, the low damage of fracturing fluid to the reservoir is determined. The TPA degradation performance test determines whether the TPA causes damage to the hydraulic fracture after the temporary plugging fracturing. Finally, by testing the TPA pressure-bearing capacity and the temporary plugging aggregation body permeability, the plugging performance and the aggregation body permeability are determined. The results show the following: (1) Guar gum fracturing fluid shows good gel-breaking performance under the action of breaking agent, and the recommended concentration of breaking agent is 300 ppm. At 90~120 °C, the degradation rate of the three types of TPAs can reach more than 65%, and it can be effectively carried into the wellbore during the fracturing fluid flowback stage to achieve the effect of removing the TPA in the fracture. (2) The results of the pressure-bearing performance of the TPA show that the two kinds of TPAs can quickly achieve the plugging effect after plugging start: the effect of ZD-2 (poly lactic-co-glycolic acid (PLGA)) particle-and-powder combined TPA on forming an effective temporary plugging accumulation body in fractures is better than that of ZD-1 (PLGA) pure powder. There are large pores between the particles, and the fracturing fluid can still flow through the pores, so the ZD-3 (a mixture of lactide and PLGA) granular temporary plugging agent cannot form an effective plugging. (3) The law of length of the temporary plugging accumulation body shows that the ZD-2 combined TPA has stronger plugging ability for medium-aperture simulated fracture pores, while the ZD-1 powder TPA has stronger plugging ability for small aperture simulated fracture pores, and the ZD-3 granular TPA should be avoided alone as far as possible. This study further enriches and improves the understanding of the mechanism of temporary plugging diverting fracturing fluid.

Funder

National Natural Science Foundation of China

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum

Planned Project, Hubei Provincial Department of Science and Technology

Project of Science and technology research, Education Department of Hubei Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3