Advanced, Superior Shale Oil EOR Methods for the DJ Basin

Author:

Downey Robert A1,Venepalli Kiran K2,Erdle James C2

Affiliation:

1. Shale Ingenuity LLC

2. The Computer Modeling Group Ltd

Abstract

AbstractAccording to Novi Labs, a well data analytics company, as of April, 2022, 94,000 horizontal shale oil wells had been placed into production in the 5 major US shale oil basins. Oil production from these wells is characterized by high initial rates and steep declines, with well lives of 9 to 16 years. Oil recovery factors, as a percentage of oil in place, range from 2.5 to 8 percent, leaving the vast majority of oil resources unrecovered. Shale oil EOR is in its infancy, with only 49 permitted projects involving a few hundred wells. 36 of these EOR projects are in the Eagle Ford shale. Prior publications have provided information on this activity, almost all of which involve cyclic injection of natural gas, or Huff-n-Puff EOR. Incremental recoveries have been projected to range from 10% to 80% of primary EUR.Our objective is to describe two novel shale oil EOR methods that may provide superior incremental shale oil recovery of 100 to 200% of primary EUR in the DJ Basin Niobrara shale. We have developed two superior shale oil EOR methods that utilize a triplex pump to inject a liquid solvent mixture into the Niobrara shale reservoir, and methods to fully recover the injectant at the surface, for storage and reinjection. The processes are fully integrated with compositional reservoir simulation to optimize the recovery of residual oil during each injection and production cycle.Compositional reservoir simulation modeling of the processes in a production and pressure history-matched horizontal DJ Basin Niobrara well indicates recoveries of 180% to 360% of primary EUR may be achieved. These processes have numerous advantages over cyclic gas injection - shorter injection time, faster and greater oil recovery, lower risk of interwell communication, lower cost of production, elimination of the need for artificial lift, and lower GHG emissions and water costs. These processes should work in all US shale oil plays, and have been successfully field tested in some. If implemented early in the well life, their application may enable recovery of more oil, faster, and preclude the need for artificial lift, resulting in shallower decline rates and much greater reserves. The processes also emit less GHG emissions and have lower water costs per barrel than primary recovery.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3