Use of Reservoir Simulation to Forecast Field EOR Response - An Eagle Ford Gas Injection Huff-N-Puff Application

Author:

Kerr Erich1,Venepalli Kiran Kumar1,Patel K2,Ambrose Raymond1,Erdle James2

Affiliation:

1. EP Energy

2. Computer Modelling Group Ltd.

Abstract

Abstract Enhanced oil recovery in unconventional plays has been a focus of many E&P operators to increase recovery factors. Conventional displacement-based secondary (e.g. water flooding) and tertiary EOR methods are not viable options due to their low injectivity in these ultra-low permeability formations. As such, huff-n-puff (HnP) EOR techniques involving field gas injection may be the most effective EOR methods to increase the recovery factors from these shale formations. Several numerical reservoir simulation studies have showed the efficiency of CO2 HnP process in shale and tight formations (Yu et al, 2014); however, these studies show little to no field results to support the simulation predictions. This paper describes the conceptual development of the reservoir simulation models to investigate the viability of gas injection HnP in unconventional reservoirs and the results of applying those methods in Eagle Ford field test sites. Single-well and multi-well models with multi-stage hydraulic fractures were constructed and history matched using their primary production period performance. Sensitivity studies were conducted on well communication behavior/impacts, injection gas compositions, injection rates, injection/production cycling, and reservoir fluid types to optimize the pilot project well location(s) and to inform development strategies. Optimal cases from the simulation study were successfully applied to multi-well pads in the Eagle Ford formation across multiple fluid types. The simulation and the field application results were summarized and compared to provide detailed insights of unconventional HnP EOR. This study indicates the importance of confinement of the gases to afford optimal recovery factors during unconventional gas HnP EOR. An optimization engine was used in this study to optimize key operational parameters, such as injection pressures and slug sizes, to maximize recovery and efficiency. The resulting EOR designs were successfully implemented in field operations. Field recovery factors are within 10% of those predicted by simulation, indicating the value of numerical reservoir simulation prior to field trials and subsequent future development.

Publisher

SPE

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3