Enhanced Oil Recovery in Liquid–Rich Shale Reservoirs: Laboratory to Field

Author:

Alharthy Najeeb1,Teklu Tadesse1,Kazemi Hossein1,Graves Ramona1,Hawthorne Steven2,Braunberger Jason2,Kurtoglu Basak3

Affiliation:

1. Colorado School of Mines

2. Energy and Environmental Research Center

3. Marathon Oil

Abstract

Summary Production of tight oil from shale reservoirs in North America reduces oil imports and has better economics than natural gas. Currently, there is a strong interest in oil production from Bakken, Eagle Ford, Niobrara, and other tight formations. However, oil-recovery fraction for Bakken remains low, which is approximately 4–6% of the oil in place. Even with this low oil-recovery fraction, a recent United States Geological Survey study stated that the Bakken and Three Forks recoverable reserves are estimated to be 7.4 billion bbl; thus, a large volume of oil will remain unrecovered, which was the motivation to investigate the feasibility of enhanced oil recovery (EOR) in liquid-rich shale reservoirs such as Bakken. In this paper, we will present both laboratory and numerical modeling of EOR in Bakken cores by use of carbon dioxide (CO2), methane/ethane-solvent mixture (C1/C2), and nitrogen (N2). The laboratory experiments were conducted at the Energy and Environmental Research Center (EERC). The experiments recovered 90+% oil from several Middle Bakken cores and nearly 40% from Lower Bakken cores. To decipher the oil-recovery mechanisms in the experiments, a numerical compositional model was constructed to match laboratory-oil-recovery results. We concluded that solvent injection mobilizes matrix oil by miscible mixing and solvent extraction in a narrow region near the fracture/matrix interface, thus promoting countercurrent flow of oil from the matrix instead of oil displacement through the matrix. Specifically, compositional-modeling results indicate that the main oil-recovery mechanism is miscible oil extraction at the matrix/fracture interface region. However, the controlling factors include repressurization, oil swelling, viscosity and interfacial-tension (IFT) reduction, diffusion/advection mass transfer, and wettability alteration. We scaled up laboratory results to field applications by means of a compositional numerical model. For field applications, we resorted to the huff ’n’ puff protocol to assess the EOR potential for a North Dakota Middle Bakken well. We concluded that long soak times yield only a small amount of additional oil compared with short soak times, and reinjecting wet gas, composed of C1, C2, C3, and C4+, produces nearly as much oil as CO2 injection.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3