Water Blocks in Tight Formations: The Role of Matrix/Fracture Interaction in Hydrocarbon-Permeability Reduction and Its Implications in the Use of Enhanced Oil Recovery Techniques

Author:

Longoria Rafael A.1,Liang Tianbo1,Huynh Uyen T.1,Nguyen Quoc P.1,DiCarlo David A.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Hydraulic fracturing is used to obtain economical rates from tight and unconventional formations by increasing the surface area of the reservoir within the flowing distance to a high-conductivity pathway. However, a significant fraction of the fracturing fluid is never recovered, and thus may reduce the hydrocarbon permeability near the fracture. Here, we experimentally mimic the water-invasion process during fracturing, and measure the effective permeability changes in a low-permeability core. Measurements of water flowback and effective permeability as a function of interfacial tension (IFT), flow rate, and shut-in time suggest that water is being held at the fracture face because of the capillary discontinuity (i.e., when the water leaves the matrix and enters a space with minimal capillary pressure). This effect arises from the capillary interaction between the matrix and the fracture, and is akin to the capillary end effect in coreflood experiments. The results show that this effect, although only a laboratory experimental artifact for conventional reservoirs, can be a significant source of effective hydrocarbon-permeability reduction by fracturing-fluid invasion into the formation in unconventional and tight reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3