Image Processing and Machine Learning Applied to Lithology Identification, Classification and Quantification of Thin Section Cutting Samples

Author:

Caja Miguel Ángel1,Peña Andrea Carolina2,Campos José Rafael1,García Diego Laura1,Tritlla Jordi3,Bover-Arnal Telm2,Martín-Martín Juan Diego2

Affiliation:

1. Repsol Technology Lab

2. Universitat de Barcelona

3. Repsol E&P

Abstract

Abstract Cuttings provide the opportunity to precisely look at the rock that has been drilled. A preliminary drill cuttings description is commontly performed by mudloggers and wellsite geologists using conventional binocular microscope at the drilling rig. After this preliminary description, often the bags of cuttings are stored in a warehouse and samples are seldom examined back again. Cuttings give the geologist information about the formation lithology needed for geologic correlation, understanding about reservoir quality, seals and source rocks, and can also be an input for the petrophysicist. In this study, we are testing a methodology to identify, classify and quantify lithologies present in cutting samples using thin section images. The method includes sample preparation (washing, drying and thin section cuttings preparation), image acquisition (to obtain whole thin section gigapixel high resolution microscopy images), virtual microscopy (to identify lithologies) and automatic image analysis (to perform supervised machine learning lithology clasiffication). Virtual microscopy allowed the identification of four main lithologies in all the studied thin sections: quartzites (including loose quartz grains), siltstones, claystones and carbonates. Image analysis allowed the classification and quantification of the identified lithologies in 16 drill cutting samples from two tight gas reservoirs. This innovative methodology allowed the fast identification of lithologies using virtual microscopy and their classification and quantification by image analysis and supervised machine learning. This approach is widely accessible as open source software was used for virtual microscopy and image analysis. Algorithm training and model generation was relativelly fast, and its performance or accuracy was qualititavely evaluated by virtual microscopy with good classification results.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3