Petrographic Microscopy with Ray Tracing and Segmentation from Multi-Angle Polarisation Whole-Slide Images

Author:

Acevedo Zamora Marco Andres1ORCID,Kamber Balz Samuel1ORCID

Affiliation:

1. School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia

Abstract

‘Slide scanners’ are rapid optical microscopes equipped with automated and accurate x-y travel stages with virtual z-motion that cannot be rotated. In biomedical microscopic imaging, they are widely deployed to generate whole-slide images (WSI) of tissue samples in various modes of illumination. The availability of WSI has motivated the development of instrument-agnostic advanced image analysis software, helping drug development, pathology, and many other areas of research. Slide scanners are now being modified to enable polarised petrographic microscopy by simulating stage rotation with the acquisition of multiple rotation angles of the polariser–analyser pair for observing randomly oriented anisotropic materials. Here we report on the calibration strategy of one repurposed slide scanner and describe a pilot image analysis pipeline designed to introduce the wider audience to the complexity of performing computer-assisted feature recognition on mineral groups. The repurposed biological scanner produces transmitted light plane- and cross-polarised (TL-PPL and XPL) and unpolarised reflected light (RL) WSI from polished thin sections or slim epoxy mounts at various magnifications, yielding pixel dimensions from ca. 2.7 × 2.7 to 0.14 × 0.14 µm. A data tree of 14 WSI is regularly obtained, containing two RL and six of each PPL and XPL WSI (at 18° rotation increments). This pyramidal image stack is stitched and built into a local server database simultaneously with acquisition. The pyramids (multi-resolution ‘cubes’) can be viewed with freeware locally deployed for teaching petrography and collaborative research. The main progress reported here concerns image analysis with a pilot open-source software pipeline enabling semantic segmentation on petrographic imagery. For this purpose, all WSI are post-processed and aligned to a ‘fixed’ reflective surface (RL), and the PPL and XPL stacks are then summarised in one image, each with ray tracing that describes visible light reflection, absorption, and O- and E-wave interference phenomena. The maximum red-green-blue values were found to best overcome the limitation of refractive index anisotropy for segmentation based on pixel-neighbouring feature maps. This strongly reduces the variation in dichroism in PPL and interference colour in XPL. The synthetic ray trace WSI is then combined with one RL to estimate modal mineralogy with multi-scale algorithms originally designed for object-based cell segmentation in pathological tissues. This requires generating a small number of polygonal expert annotations that inform a training dataset, enabling on-the-fly machine learning classification into mineral classes. The accuracy of the approach was tested by comparison with modal mineralogy obtained by energy-dispersive spectroscopy scanning electron microscopy (SEM-EDX) for a suite of rocks of simple mineralogy (granulites and peridotite). The strengths and limitations of the pixel-based classification approach are described, and phenomena from sample preparation imperfections to semantic segmentation artefacts around fine-grained minerals and/or of indiscriminate optical properties are discussed. Finally, we provide an outlook on image analysis strategies that will improve the status quo by using the first-pass mineralogy identification from optical WSI to generate a location grid to obtain targeted chemical data (e.g., by SEM-EDX) and by considering the rock texture.

Funder

QUT South American Scholarship

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference52 articles.

1. The Polarized Light Microscope: Should We Teach the use of a 19th Century Instrument in the 21st Century?;Gunter;J. Geosci. Educ.,2004

2. The Universal Stage: The Past, Present, and Future of a Mineralogical Research Instrument;Kile;Geochem. News,2009

3. Frost, M.J. (1983). Mineralogy, Springer.

4. Data management and archiving in a large microscopy-and-imaging, multi-user facility: Problems and solutions;Wallace;Mol. Reprod. Dev.,2015

5. Collaborative analysis of multi-gigapixel imaging data using Cytomine;Rollus;Bioinformatics,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3